云计算中基于混合优化算法的多目标安全感知工作流调度算法

IF 0.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Web Intelligence Pub Date : 2023-07-27 DOI:10.3233/web-220094
G. Narendrababu Reddy, S. Phani Kumar
{"title":"云计算中基于混合优化算法的多目标安全感知工作流调度算法","authors":"G. Narendrababu Reddy, S. Phani Kumar","doi":"10.3233/web-220094","DOIUrl":null,"url":null,"abstract":"Cloud computing provides the on-demand service of the user with the use of distributed physical machines, in which security has become a challenging factor while performing various tasks. Several methods were developed for the cloud computing workflow scheduling based on optimal resource allocation; still, the security consideration and efficient allocation of the workflow are challenging. Hence, this research introduces a hybrid optimization algorithm based on multi-objective workflow scheduling in the cloud computing environment. The Regressive Whale Water Tasmanian Devil Optimization (RWWTDO) is proposed for the optimal workflow scheduling based on the multi-objective fitness function with nine various factors, like Predicted energy, Quality of service (QoS), Resource utilization, Actual task running time, Bandwidth utilization, Memory capacity, Make span equivalent of the total cost, Task priority, and Trust. Besides, secure data transmission is employed using the triple data encryption standard (3DES) to acquire enhanced security for workflow scheduling. The method’s performance is evaluated using the resource utilization, predicted energy, task scheduling cost, and task scheduling time and acquired the values of 1.00000, 0.16587, 0.00041, and 0.00314, respectively.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective secure aware workflow scheduling algorithm in cloud computing based on hybrid optimization algorithm\",\"authors\":\"G. Narendrababu Reddy, S. Phani Kumar\",\"doi\":\"10.3233/web-220094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing provides the on-demand service of the user with the use of distributed physical machines, in which security has become a challenging factor while performing various tasks. Several methods were developed for the cloud computing workflow scheduling based on optimal resource allocation; still, the security consideration and efficient allocation of the workflow are challenging. Hence, this research introduces a hybrid optimization algorithm based on multi-objective workflow scheduling in the cloud computing environment. The Regressive Whale Water Tasmanian Devil Optimization (RWWTDO) is proposed for the optimal workflow scheduling based on the multi-objective fitness function with nine various factors, like Predicted energy, Quality of service (QoS), Resource utilization, Actual task running time, Bandwidth utilization, Memory capacity, Make span equivalent of the total cost, Task priority, and Trust. Besides, secure data transmission is employed using the triple data encryption standard (3DES) to acquire enhanced security for workflow scheduling. The method’s performance is evaluated using the resource utilization, predicted energy, task scheduling cost, and task scheduling time and acquired the values of 1.00000, 0.16587, 0.00041, and 0.00314, respectively.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

云计算通过使用分布式物理机器为用户提供按需服务,在执行各种任务时,安全性已成为一个具有挑战性的因素。提出了几种基于资源优化分配的云计算工作流调度方法;但是,安全性考虑和工作流的有效分配仍然具有挑战性。因此,本研究引入了一种基于云计算环境下多目标工作流调度的混合优化算法。针对预测能量、服务质量(QoS)、资源利用率、实际任务运行时间、带宽利用率、内存容量、总成本的Make span等效量、任务优先级和信任等9个因素,提出了基于多目标适应度函数的回归鲸水塔斯马尼亚魔鬼优化算法(RWWTDO)。此外,采用三层数据加密标准(3DES)进行数据安全传输,增强了工作流调度的安全性。利用资源利用率、预测能量、任务调度成本和任务调度时间对该方法的性能进行评价,得到的值分别为1.00000、0.16587、0.00041和0.00314。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective secure aware workflow scheduling algorithm in cloud computing based on hybrid optimization algorithm
Cloud computing provides the on-demand service of the user with the use of distributed physical machines, in which security has become a challenging factor while performing various tasks. Several methods were developed for the cloud computing workflow scheduling based on optimal resource allocation; still, the security consideration and efficient allocation of the workflow are challenging. Hence, this research introduces a hybrid optimization algorithm based on multi-objective workflow scheduling in the cloud computing environment. The Regressive Whale Water Tasmanian Devil Optimization (RWWTDO) is proposed for the optimal workflow scheduling based on the multi-objective fitness function with nine various factors, like Predicted energy, Quality of service (QoS), Resource utilization, Actual task running time, Bandwidth utilization, Memory capacity, Make span equivalent of the total cost, Task priority, and Trust. Besides, secure data transmission is employed using the triple data encryption standard (3DES) to acquire enhanced security for workflow scheduling. The method’s performance is evaluated using the resource utilization, predicted energy, task scheduling cost, and task scheduling time and acquired the values of 1.00000, 0.16587, 0.00041, and 0.00314, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Web Intelligence
Web Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
0.90
自引率
0.00%
发文量
35
期刊介绍: Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]
期刊最新文献
Hybrid optimization based deep stacked autoencoder for routing and intrusion detection Fractional hunger jellyfish search optimization based deep quantum neural network for malicious traffic segregation and attack detection Efficient IoT-based heart disease prediction framework with Weight Updated Trans-Bidirectional Long Short Term Memory-Gated Recurrent Unit Development of optimized cascaded LSTM with Seq2seqNet and transformer net for aspect-based sentiment analysis framework Business model innovation and creativity impact on entrepreneurship development: An empirical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1