{"title":"基于贝叶斯的低剂量CT图像改进隐马尔可夫算法","authors":"Xiangru Hou","doi":"10.38007/ijmc.2023.040104","DOIUrl":null,"url":null,"abstract":": In order to reduce the radiation exposure of patients during CT scan, low-dose CT images were produced, but the disadvantage was that the image quality was reduced. The Bayesian maximum posterior probability estimation (Bayesian MAP) method is an applied statistical method that can estimate the original noise-independent coefficients from the noise-contaminated image detail coefficients. This paper aims to study the application of bayesian based improved hidden markov algorithm in low-dose CT images, which has become the focus of CT research in recent years. In this experiment, hmrf-em, eHMRF algorithm and hmrf-msa-em algorithm were firstly analyzed by mathematical statistics within the experimental scope, and the superiority of this algorithm was compared by looking at different coefficients. The classification and statistical analysis of the re-data statistical method were carried out by using the naive bayesian algorithm and the improved hidden markov algorithm based on bayes. And the use of a single variable method to compare the use of bayesian based improved hidden markov algorithm in the low-dose CT image imaging whether there are different changes, and the degree of change. Experimental data show that the improved hidden markov algorithm based on bayes achieves higher values of Jaccard, Dice and CCR at different noise levels. The improved hidden markov algorithm based on bayes is clearer than the low-dose CT images obtained by the naive bayes algorithm. In various medical","PeriodicalId":43265,"journal":{"name":"International Journal of Mobile Computing and Multimedia Communications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Hidden Markov Algorithm Based on Bayes in Low Dose CT Images\",\"authors\":\"Xiangru Hou\",\"doi\":\"10.38007/ijmc.2023.040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In order to reduce the radiation exposure of patients during CT scan, low-dose CT images were produced, but the disadvantage was that the image quality was reduced. The Bayesian maximum posterior probability estimation (Bayesian MAP) method is an applied statistical method that can estimate the original noise-independent coefficients from the noise-contaminated image detail coefficients. This paper aims to study the application of bayesian based improved hidden markov algorithm in low-dose CT images, which has become the focus of CT research in recent years. In this experiment, hmrf-em, eHMRF algorithm and hmrf-msa-em algorithm were firstly analyzed by mathematical statistics within the experimental scope, and the superiority of this algorithm was compared by looking at different coefficients. The classification and statistical analysis of the re-data statistical method were carried out by using the naive bayesian algorithm and the improved hidden markov algorithm based on bayes. And the use of a single variable method to compare the use of bayesian based improved hidden markov algorithm in the low-dose CT image imaging whether there are different changes, and the degree of change. Experimental data show that the improved hidden markov algorithm based on bayes achieves higher values of Jaccard, Dice and CCR at different noise levels. The improved hidden markov algorithm based on bayes is clearer than the low-dose CT images obtained by the naive bayes algorithm. In various medical\",\"PeriodicalId\":43265,\"journal\":{\"name\":\"International Journal of Mobile Computing and Multimedia Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Computing and Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38007/ijmc.2023.040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Computing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38007/ijmc.2023.040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Improved Hidden Markov Algorithm Based on Bayes in Low Dose CT Images
: In order to reduce the radiation exposure of patients during CT scan, low-dose CT images were produced, but the disadvantage was that the image quality was reduced. The Bayesian maximum posterior probability estimation (Bayesian MAP) method is an applied statistical method that can estimate the original noise-independent coefficients from the noise-contaminated image detail coefficients. This paper aims to study the application of bayesian based improved hidden markov algorithm in low-dose CT images, which has become the focus of CT research in recent years. In this experiment, hmrf-em, eHMRF algorithm and hmrf-msa-em algorithm were firstly analyzed by mathematical statistics within the experimental scope, and the superiority of this algorithm was compared by looking at different coefficients. The classification and statistical analysis of the re-data statistical method were carried out by using the naive bayesian algorithm and the improved hidden markov algorithm based on bayes. And the use of a single variable method to compare the use of bayesian based improved hidden markov algorithm in the low-dose CT image imaging whether there are different changes, and the degree of change. Experimental data show that the improved hidden markov algorithm based on bayes achieves higher values of Jaccard, Dice and CCR at different noise levels. The improved hidden markov algorithm based on bayes is clearer than the low-dose CT images obtained by the naive bayes algorithm. In various medical