无人机在三维空间绕飞运动目标的分布式编队控制

Yanhong Luo, A. Bai, Huaguang Zhang
{"title":"无人机在三维空间绕飞运动目标的分布式编队控制","authors":"Yanhong Luo, A. Bai, Huaguang Zhang","doi":"10.1142/s273748072150014x","DOIUrl":null,"url":null,"abstract":"In this paper, a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation. First, two sets of definitions, space angle definition and space vector definition, are presented in order to describe the flight state and construct the desired relative velocity. Then, the relative kinematic model between the UAV and the moving target is established. The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity, circling radius and relative angular spacing. Next, the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method. Finally, the numerical simulation is carried out to verify the effectiveness of the proposed control method.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Distributed Formation Control of UAVs for Circumnavigating a Moving Target in Three-Dimensional Space\",\"authors\":\"Yanhong Luo, A. Bai, Huaguang Zhang\",\"doi\":\"10.1142/s273748072150014x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation. First, two sets of definitions, space angle definition and space vector definition, are presented in order to describe the flight state and construct the desired relative velocity. Then, the relative kinematic model between the UAV and the moving target is established. The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity, circling radius and relative angular spacing. Next, the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method. Finally, the numerical simulation is carried out to verify the effectiveness of the proposed control method.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s273748072150014x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s273748072150014x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对多无人机编队的目标跟踪和绕航问题,提出了一种新的编队控制策略。首先,提出了空间角度定义和空间矢量定义两组定义,用于描述飞行器的飞行状态和构造期望的相对速度;然后,建立了无人机与运动目标的相对运动学模型;采用动态反馈线性化方法构造分布式控制律,以实现目标速度、圆弧半径和相对角间距的跟踪和绕航控制。其次,基于Lyapunov方法合理选择相应的参数,进一步保证闭环系统的指数稳定性。最后,通过数值仿真验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Formation Control of UAVs for Circumnavigating a Moving Target in Three-Dimensional Space
In this paper, a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation. First, two sets of definitions, space angle definition and space vector definition, are presented in order to describe the flight state and construct the desired relative velocity. Then, the relative kinematic model between the UAV and the moving target is established. The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity, circling radius and relative angular spacing. Next, the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method. Finally, the numerical simulation is carried out to verify the effectiveness of the proposed control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1