P. Praus, E. Kočišová, P. Mojzeš, J. Štěpánek, F. Sureau
{"title":"用时间分辨显微荧光法和荧光成像技术研究修饰寡核苷酸的细胞摄取","authors":"P. Praus, E. Kočišová, P. Mojzeš, J. Štěpánek, F. Sureau","doi":"10.1155/2012/415496","DOIUrl":null,"url":null,"abstract":"Fluorescence microimaging and homodyne phase-resolved confocal microspectrofluorimetry were used to monitor the transport of antisense oligonucleotide into cancer MCF7 cells and the subsequent intracellular distribution. Phosphorothioate analog of 15-mer oligoadenylate (dA15) labeled by ATTO 425 was complexed with 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin (H2TMPyP4) as an uptake-mediating agent. Fluorescence lifetime data within a broad spectral range have revealed properties of both components inside the cell. H2TMPyP4 lifetime inside the cell is not influenced in this malignant cell line, while the lifetime of modified oligonucleotide was found to be slightly shortened.","PeriodicalId":51163,"journal":{"name":"Spectroscopy-An International Journal","volume":"33 1","pages":"415-419"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of Cellular Uptake of Modified Oligonucleotides by Using Time-Resolved Microspectrofluorimetry and Florescence Imaging\",\"authors\":\"P. Praus, E. Kočišová, P. Mojzeš, J. Štěpánek, F. Sureau\",\"doi\":\"10.1155/2012/415496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence microimaging and homodyne phase-resolved confocal microspectrofluorimetry were used to monitor the transport of antisense oligonucleotide into cancer MCF7 cells and the subsequent intracellular distribution. Phosphorothioate analog of 15-mer oligoadenylate (dA15) labeled by ATTO 425 was complexed with 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin (H2TMPyP4) as an uptake-mediating agent. Fluorescence lifetime data within a broad spectral range have revealed properties of both components inside the cell. H2TMPyP4 lifetime inside the cell is not influenced in this malignant cell line, while the lifetime of modified oligonucleotide was found to be slightly shortened.\",\"PeriodicalId\":51163,\"journal\":{\"name\":\"Spectroscopy-An International Journal\",\"volume\":\"33 1\",\"pages\":\"415-419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/415496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/415496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Cellular Uptake of Modified Oligonucleotides by Using Time-Resolved Microspectrofluorimetry and Florescence Imaging
Fluorescence microimaging and homodyne phase-resolved confocal microspectrofluorimetry were used to monitor the transport of antisense oligonucleotide into cancer MCF7 cells and the subsequent intracellular distribution. Phosphorothioate analog of 15-mer oligoadenylate (dA15) labeled by ATTO 425 was complexed with 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin (H2TMPyP4) as an uptake-mediating agent. Fluorescence lifetime data within a broad spectral range have revealed properties of both components inside the cell. H2TMPyP4 lifetime inside the cell is not influenced in this malignant cell line, while the lifetime of modified oligonucleotide was found to be slightly shortened.