{"title":"天然气耀斑气体排放遥感","authors":"R. Haus, R. Wilkinson, J. Heland, K. Schäfer","doi":"10.1088/0963-9659/7/4/020","DOIUrl":null,"url":null,"abstract":"Emissions from operational natural gas flares are examined by a remote sensing technique using a commercial moderate-resolution Fourier-transform infrared spectrometer. The thermal radiation emitted by the post-combustion gas is analysed to determine plume temperatures and concentrations of and . The multicomponent air pollution software (MAPS) is applied which is based on radiative transfer line-by-line calculations and least-squares fit procedures. Emission rates and combustion efficiencies are calculated which indicate that the local environmental impact of methane emissions from natural gas flares is small, while significant amounts of carbon dioxide are released.","PeriodicalId":20787,"journal":{"name":"Pure and Applied Optics: Journal of The European Optical Society Part A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Remote sensing of gas emissions on natural gas flares\",\"authors\":\"R. Haus, R. Wilkinson, J. Heland, K. Schäfer\",\"doi\":\"10.1088/0963-9659/7/4/020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emissions from operational natural gas flares are examined by a remote sensing technique using a commercial moderate-resolution Fourier-transform infrared spectrometer. The thermal radiation emitted by the post-combustion gas is analysed to determine plume temperatures and concentrations of and . The multicomponent air pollution software (MAPS) is applied which is based on radiative transfer line-by-line calculations and least-squares fit procedures. Emission rates and combustion efficiencies are calculated which indicate that the local environmental impact of methane emissions from natural gas flares is small, while significant amounts of carbon dioxide are released.\",\"PeriodicalId\":20787,\"journal\":{\"name\":\"Pure and Applied Optics: Journal of The European Optical Society Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Optics: Journal of The European Optical Society Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0963-9659/7/4/020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Optics: Journal of The European Optical Society Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0963-9659/7/4/020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote sensing of gas emissions on natural gas flares
Emissions from operational natural gas flares are examined by a remote sensing technique using a commercial moderate-resolution Fourier-transform infrared spectrometer. The thermal radiation emitted by the post-combustion gas is analysed to determine plume temperatures and concentrations of and . The multicomponent air pollution software (MAPS) is applied which is based on radiative transfer line-by-line calculations and least-squares fit procedures. Emission rates and combustion efficiencies are calculated which indicate that the local environmental impact of methane emissions from natural gas flares is small, while significant amounts of carbon dioxide are released.