局部变形篡改定位中的多种融合策略

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-03-01 DOI:10.4018/IJDCF.2021030107
Yongzhen Ke, Yiping Cui
{"title":"局部变形篡改定位中的多种融合策略","authors":"Yongzhen Ke, Yiping Cui","doi":"10.4018/IJDCF.2021030107","DOIUrl":null,"url":null,"abstract":"Tampering with images may involve the field of crime and also bring problems such as incorrect values to the public. Image local deformation is one of the most common image tampering methods, where the original texture features and the correlation between the pixels of an image are changed. Multiple fusion strategies based on first-order difference images and their texture feature is proposed to locate the tamper in local deformation image. Firstly, texture features using overlapping blocks on one color channel are extracted and fed into fuzzy c-means clustering method to generate a tamper probability map (TPM), and then several TPMs with different block sizes are fused in the first fusion. Secondly, different TPMs with different color channels and different texture features are respectively fused in the second and third fusion. The experimental results show that the proposed method can accurately detect the location of the local deformation of an image.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Fusion Strategies in Localization of Local Deformation Tampering\",\"authors\":\"Yongzhen Ke, Yiping Cui\",\"doi\":\"10.4018/IJDCF.2021030107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tampering with images may involve the field of crime and also bring problems such as incorrect values to the public. Image local deformation is one of the most common image tampering methods, where the original texture features and the correlation between the pixels of an image are changed. Multiple fusion strategies based on first-order difference images and their texture feature is proposed to locate the tamper in local deformation image. Firstly, texture features using overlapping blocks on one color channel are extracted and fed into fuzzy c-means clustering method to generate a tamper probability map (TPM), and then several TPMs with different block sizes are fused in the first fusion. Secondly, different TPMs with different color channels and different texture features are respectively fused in the second and third fusion. The experimental results show that the proposed method can accurately detect the location of the local deformation of an image.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.2021030107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.2021030107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

篡改图像可能涉及犯罪领域,也会给公众带来错误的价值观等问题。图像局部变形是最常见的图像篡改方法之一,它改变了图像的原始纹理特征和像素之间的相关性。提出了基于一阶差分图像及其纹理特征的多重融合策略来定位局部变形图像中的篡改点。首先,提取一个颜色通道上具有重叠块的纹理特征,并将其输入模糊c均值聚类方法生成篡改概率图(TPM),然后在第一次融合中融合多个不同块大小的篡改概率图。其次,在第二次和第三次融合中分别融合具有不同颜色通道和不同纹理特征的不同TPMs;实验结果表明,该方法可以准确地检测出图像局部变形的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Fusion Strategies in Localization of Local Deformation Tampering
Tampering with images may involve the field of crime and also bring problems such as incorrect values to the public. Image local deformation is one of the most common image tampering methods, where the original texture features and the correlation between the pixels of an image are changed. Multiple fusion strategies based on first-order difference images and their texture feature is proposed to locate the tamper in local deformation image. Firstly, texture features using overlapping blocks on one color channel are extracted and fed into fuzzy c-means clustering method to generate a tamper probability map (TPM), and then several TPMs with different block sizes are fused in the first fusion. Secondly, different TPMs with different color channels and different texture features are respectively fused in the second and third fusion. The experimental results show that the proposed method can accurately detect the location of the local deformation of an image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1