{"title":"在接近中性的pH和环境温度下,固体表面表面结合的Fe(II)还原硝酸盐","authors":"Yong H. Huang, Tian C. Zhang","doi":"10.1061/(ASCE)EE.1943-7870.0001130","DOIUrl":null,"url":null,"abstract":"AbstractNitrate reduction by Fe(II) species was previously known to occur only in Cu2+-catalyzed and alkaline conditions or at high temperatures. In this study, a reactant system consisting of nitrate, iron oxide particles, and Fe(II) (in different forms) was used to study possible reactions between nitrate and Fe(II). At near-neutral pH, nitrate could not be reduced by aqueous Fe(II) species or by Fe(OH)2 gel. In the presence of magnetite (Fe3O4) particles, however, a significant amount of Fe2+ could be adsorbed onto an Fe3O4 surface at pH=7.3 and became surface-bound Fe2+(S.B. Fe2+), which could react with nitrate via the reaction: 12 S.B. Fe2++NO3−+13 H2O→4 Fe3O4↓+NH4++22 H+. The reaction stopped when pH decreased to <6.8. Introducing trace amount of O2 or Fe3+(aq) into the nitrate-Fe2+ reactant system was as effective as seeding magnetite particles in triggering the nitrate-Fe(II) reaction, suggesting that lepidocrocite (γ-FeOOH) is a precursor for initiating the nitrate-Fe(II) reaction. Hematite and ...","PeriodicalId":17335,"journal":{"name":"Journal of the Environmental Engineering Division","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nitrate Reduction by Surface-Bound Fe(II) on Solid Surfaces at Near-Neutral pH and Ambient Temperature\",\"authors\":\"Yong H. Huang, Tian C. Zhang\",\"doi\":\"10.1061/(ASCE)EE.1943-7870.0001130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractNitrate reduction by Fe(II) species was previously known to occur only in Cu2+-catalyzed and alkaline conditions or at high temperatures. In this study, a reactant system consisting of nitrate, iron oxide particles, and Fe(II) (in different forms) was used to study possible reactions between nitrate and Fe(II). At near-neutral pH, nitrate could not be reduced by aqueous Fe(II) species or by Fe(OH)2 gel. In the presence of magnetite (Fe3O4) particles, however, a significant amount of Fe2+ could be adsorbed onto an Fe3O4 surface at pH=7.3 and became surface-bound Fe2+(S.B. Fe2+), which could react with nitrate via the reaction: 12 S.B. Fe2++NO3−+13 H2O→4 Fe3O4↓+NH4++22 H+. The reaction stopped when pH decreased to <6.8. Introducing trace amount of O2 or Fe3+(aq) into the nitrate-Fe2+ reactant system was as effective as seeding magnetite particles in triggering the nitrate-Fe(II) reaction, suggesting that lepidocrocite (γ-FeOOH) is a precursor for initiating the nitrate-Fe(II) reaction. Hematite and ...\",\"PeriodicalId\":17335,\"journal\":{\"name\":\"Journal of the Environmental Engineering Division\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Environmental Engineering Division\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)EE.1943-7870.0001130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Environmental Engineering Division","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)EE.1943-7870.0001130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
摘要以前已知Fe(II)只发生在Cu2+催化和碱性条件下或高温下。本研究采用由硝酸盐、氧化铁颗粒和不同形式的铁(II)组成的反应物体系,研究硝酸盐与铁(II)之间可能发生的反应。在接近中性的pH下,硝酸盐不能被Fe(II)水溶液或Fe(OH)2凝胶还原。当磁铁矿(Fe3O4)颗粒存在时,在pH=7.3的条件下,大量Fe2+吸附在Fe3O4表面,形成表面结合的Fe2+(sb Fe2+),与硝酸盐发生反应:12 sb Fe2++NO3−+13 H2O→4 Fe3O4↓+NH4++22 H+。当pH值降至<6.8时反应停止。在硝酸盐- fe2 +反应体系中引入微量的O2或Fe3+(aq)与磁铁矿颗粒一样可以触发硝酸盐- fe (II)反应,表明蛭石(γ-FeOOH)是引发硝酸盐- fe (II)反应的前驱体。赤铁矿和……
Nitrate Reduction by Surface-Bound Fe(II) on Solid Surfaces at Near-Neutral pH and Ambient Temperature
AbstractNitrate reduction by Fe(II) species was previously known to occur only in Cu2+-catalyzed and alkaline conditions or at high temperatures. In this study, a reactant system consisting of nitrate, iron oxide particles, and Fe(II) (in different forms) was used to study possible reactions between nitrate and Fe(II). At near-neutral pH, nitrate could not be reduced by aqueous Fe(II) species or by Fe(OH)2 gel. In the presence of magnetite (Fe3O4) particles, however, a significant amount of Fe2+ could be adsorbed onto an Fe3O4 surface at pH=7.3 and became surface-bound Fe2+(S.B. Fe2+), which could react with nitrate via the reaction: 12 S.B. Fe2++NO3−+13 H2O→4 Fe3O4↓+NH4++22 H+. The reaction stopped when pH decreased to <6.8. Introducing trace amount of O2 or Fe3+(aq) into the nitrate-Fe2+ reactant system was as effective as seeding magnetite particles in triggering the nitrate-Fe(II) reaction, suggesting that lepidocrocite (γ-FeOOH) is a precursor for initiating the nitrate-Fe(II) reaction. Hematite and ...