一种基于Arduino的开源、低成本电导率测量装置,并与手工电池耦合

Analytica Pub Date : 2023-06-02 DOI:10.3390/analytica4020017
G. Visco, E. Dell’Aglio, M. Tomassetti, Luca Ugo Fontanella, M. Sammartino
{"title":"一种基于Arduino的开源、低成本电导率测量装置,并与手工电池耦合","authors":"G. Visco, E. Dell’Aglio, M. Tomassetti, Luca Ugo Fontanella, M. Sammartino","doi":"10.3390/analytica4020017","DOIUrl":null,"url":null,"abstract":"Electrical conductivity is one of the main parameters for the characterization of water solutions and for the monitoring of water sources. In this paper, we describe a very inexpensive prototype for conductivity measurements based on Arduino UNO R3 coupled to an open-source circuit board with only passive components. We designed the printed circuit board (PCB) and the suitable handmade cell using stainless-steel electrodes and wrote the freeware management software; the assembly of the prototype, including a temperature probe, and results were relatively simple. In order to allow for replicates, the instrument design, schematics, and software are available with an open-source license. Thirty-one bottles of spring waters with conductivities of between 15.2 and 2000 µS cm−1 were tested using both this prototype and a commercial conductivity meter. Data correlation produced an equation that allowed us to obtain the conductivity value, starting with the value furnished by the Arduino apparatus in arbitrary units. The prototype is accurate enough (inaccuracy lower than 6% excluding very low conductivity values) and precise (RSD% of about 5%). Even if a lot of commercial instruments for conductivity are available, we propose a prototype built with the aim of lowering the cost of measurements, while ensuring that they remain useful for lab or in situ application, as well as for continuous water monitoring/management systems. A further aim was to propose the building of the instrument as a laboratory exercise; this can help students to better understand basic theoretical concepts regarding conductivity, electronic components, and the acquisition and treatment of analytical data.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Open-Source, Low-Cost Apparatus for Conductivity Measurements Based on Arduino and Coupled to a Handmade Cell\",\"authors\":\"G. Visco, E. Dell’Aglio, M. Tomassetti, Luca Ugo Fontanella, M. Sammartino\",\"doi\":\"10.3390/analytica4020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical conductivity is one of the main parameters for the characterization of water solutions and for the monitoring of water sources. In this paper, we describe a very inexpensive prototype for conductivity measurements based on Arduino UNO R3 coupled to an open-source circuit board with only passive components. We designed the printed circuit board (PCB) and the suitable handmade cell using stainless-steel electrodes and wrote the freeware management software; the assembly of the prototype, including a temperature probe, and results were relatively simple. In order to allow for replicates, the instrument design, schematics, and software are available with an open-source license. Thirty-one bottles of spring waters with conductivities of between 15.2 and 2000 µS cm−1 were tested using both this prototype and a commercial conductivity meter. Data correlation produced an equation that allowed us to obtain the conductivity value, starting with the value furnished by the Arduino apparatus in arbitrary units. The prototype is accurate enough (inaccuracy lower than 6% excluding very low conductivity values) and precise (RSD% of about 5%). Even if a lot of commercial instruments for conductivity are available, we propose a prototype built with the aim of lowering the cost of measurements, while ensuring that they remain useful for lab or in situ application, as well as for continuous water monitoring/management systems. A further aim was to propose the building of the instrument as a laboratory exercise; this can help students to better understand basic theoretical concepts regarding conductivity, electronic components, and the acquisition and treatment of analytical data.\",\"PeriodicalId\":7829,\"journal\":{\"name\":\"Analytica\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytica4020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电导率是表征水溶液和监测水源的主要参数之一。在本文中,我们描述了一种非常便宜的电导率测量原型,该原型基于Arduino UNO R3,与仅含无源元件的开源电路板耦合。采用不锈钢电极设计了印刷电路板(PCB)和合适的手工电池,并编写了免费的管理软件;原型机的组装,包括一个温度探头,结果都比较简单。为了允许复制,仪器设计、原理图和软件可以通过开源许可获得。使用该原型和商用电导率仪对31瓶电导率在15.2至2000µS cm - 1之间的泉水进行了测试。数据关联产生一个方程,使我们能够获得电导率值,从Arduino设备提供的任意单位的值开始。原型足够准确(不包括非常低的电导率值,不准确性低于6%)和精确(RSD%约为5%)。即使有很多商业电导率仪器可用,我们也提出了一个原型,旨在降低测量成本,同时确保它们对实验室或现场应用以及连续水监测/管理系统仍然有用。进一步的目标是建议将仪器作为实验室的练习;这可以帮助学生更好地理解有关电导率、电子元件以及分析数据的获取和处理的基本理论概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Open-Source, Low-Cost Apparatus for Conductivity Measurements Based on Arduino and Coupled to a Handmade Cell
Electrical conductivity is one of the main parameters for the characterization of water solutions and for the monitoring of water sources. In this paper, we describe a very inexpensive prototype for conductivity measurements based on Arduino UNO R3 coupled to an open-source circuit board with only passive components. We designed the printed circuit board (PCB) and the suitable handmade cell using stainless-steel electrodes and wrote the freeware management software; the assembly of the prototype, including a temperature probe, and results were relatively simple. In order to allow for replicates, the instrument design, schematics, and software are available with an open-source license. Thirty-one bottles of spring waters with conductivities of between 15.2 and 2000 µS cm−1 were tested using both this prototype and a commercial conductivity meter. Data correlation produced an equation that allowed us to obtain the conductivity value, starting with the value furnished by the Arduino apparatus in arbitrary units. The prototype is accurate enough (inaccuracy lower than 6% excluding very low conductivity values) and precise (RSD% of about 5%). Even if a lot of commercial instruments for conductivity are available, we propose a prototype built with the aim of lowering the cost of measurements, while ensuring that they remain useful for lab or in situ application, as well as for continuous water monitoring/management systems. A further aim was to propose the building of the instrument as a laboratory exercise; this can help students to better understand basic theoretical concepts regarding conductivity, electronic components, and the acquisition and treatment of analytical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions Assessment of Lycopene Levels in Dried Watermelon Pomace: A Sustainable Approach to Waste Reduction and Nutrient Valorization Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.) Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1