{"title":"三维大气模型中气相化学速率方程积分的数值格式","authors":"Wanmin Gong , Han-Ru Cho","doi":"10.1016/0960-1686(93)90044-Y","DOIUrl":null,"url":null,"abstract":"<div><p>A numerical integration scheme, designed for the gas-phase chemistry module in a 3D regional tropospheric chemistry model, is presented. Species in the chemical system are partitioned into “slow” and “fast” species, according to their lifetime under typical atmospheric conditions. A Newton-Raphson iterative scheme (implicit) is used for the fast species, while an explicit scheme is used for the slow ones. The hybrid implicit/explicit approach is tested against the Gear integration scheme for several rural and urban conditions (with and without emission/deposition). Comparisons with an exponential approximation scheme are also presented. The present integration scheme is shown to be accurate and efficient. With a 30 min integration step, the implicit/explicit scheme is at least 10-times faster than the Gear integration (with an equivalent integration step).</p></div>","PeriodicalId":100139,"journal":{"name":"Atmospheric Environment. Part A. General Topics","volume":"27 14","pages":"Pages 2147-2160"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0960-1686(93)90044-Y","citationCount":"73","resultStr":"{\"title\":\"A numerical scheme for the integration of the gas-phase chemical rate equations in three-dimensional atmospheric models\",\"authors\":\"Wanmin Gong , Han-Ru Cho\",\"doi\":\"10.1016/0960-1686(93)90044-Y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A numerical integration scheme, designed for the gas-phase chemistry module in a 3D regional tropospheric chemistry model, is presented. Species in the chemical system are partitioned into “slow” and “fast” species, according to their lifetime under typical atmospheric conditions. A Newton-Raphson iterative scheme (implicit) is used for the fast species, while an explicit scheme is used for the slow ones. The hybrid implicit/explicit approach is tested against the Gear integration scheme for several rural and urban conditions (with and without emission/deposition). Comparisons with an exponential approximation scheme are also presented. The present integration scheme is shown to be accurate and efficient. With a 30 min integration step, the implicit/explicit scheme is at least 10-times faster than the Gear integration (with an equivalent integration step).</p></div>\",\"PeriodicalId\":100139,\"journal\":{\"name\":\"Atmospheric Environment. Part A. General Topics\",\"volume\":\"27 14\",\"pages\":\"Pages 2147-2160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0960-1686(93)90044-Y\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment. Part A. General Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/096016869390044Y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part A. General Topics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096016869390044Y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A numerical scheme for the integration of the gas-phase chemical rate equations in three-dimensional atmospheric models
A numerical integration scheme, designed for the gas-phase chemistry module in a 3D regional tropospheric chemistry model, is presented. Species in the chemical system are partitioned into “slow” and “fast” species, according to their lifetime under typical atmospheric conditions. A Newton-Raphson iterative scheme (implicit) is used for the fast species, while an explicit scheme is used for the slow ones. The hybrid implicit/explicit approach is tested against the Gear integration scheme for several rural and urban conditions (with and without emission/deposition). Comparisons with an exponential approximation scheme are also presented. The present integration scheme is shown to be accurate and efficient. With a 30 min integration step, the implicit/explicit scheme is at least 10-times faster than the Gear integration (with an equivalent integration step).