{"title":"非线性增益二次型升压变换器","authors":"M. Veerachary","doi":"10.1109/COMPTELIX.2017.8004005","DOIUrl":null,"url":null,"abstract":"In this paper a dc-dc non-linear-gain quadratic type boost point of load converter is proposed. A detailed time-domain and steady-state analysis is presented to examine the proposed converter performance. Non-linear voltage boosting features are established and then the L, C components defining equations are formulated in terms of ripple quantities. The state-space models are established assuming the proposed converter exhibits two different modes in one switching cycle. Based on these averaged models a small-signal analysis is performed to obtain the dynamic performance characterizing transfer functions. Later on these transfer functions are also used in the controller design. The proposed circuit is able to boost the load voltage to a higher value than the conventional quadratic boost converter reported in literature. A 48 V, 20 Watt prototype converter test circuit is built to supply the power at constant load voltage. A 12 V dc-battery is used as power source and 100 kHz switching frequency is adopted for the prototype converter operation both in simulation and experimentation. The proposed dc-dc converter effectiveness is demonstrated both in simulations and experimentation.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"259 1","pages":"415-421"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear gain quadratic-type boost converter\",\"authors\":\"M. Veerachary\",\"doi\":\"10.1109/COMPTELIX.2017.8004005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a dc-dc non-linear-gain quadratic type boost point of load converter is proposed. A detailed time-domain and steady-state analysis is presented to examine the proposed converter performance. Non-linear voltage boosting features are established and then the L, C components defining equations are formulated in terms of ripple quantities. The state-space models are established assuming the proposed converter exhibits two different modes in one switching cycle. Based on these averaged models a small-signal analysis is performed to obtain the dynamic performance characterizing transfer functions. Later on these transfer functions are also used in the controller design. The proposed circuit is able to boost the load voltage to a higher value than the conventional quadratic boost converter reported in literature. A 48 V, 20 Watt prototype converter test circuit is built to supply the power at constant load voltage. A 12 V dc-battery is used as power source and 100 kHz switching frequency is adopted for the prototype converter operation both in simulation and experimentation. The proposed dc-dc converter effectiveness is demonstrated both in simulations and experimentation.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"259 1\",\"pages\":\"415-421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8004005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper a dc-dc non-linear-gain quadratic type boost point of load converter is proposed. A detailed time-domain and steady-state analysis is presented to examine the proposed converter performance. Non-linear voltage boosting features are established and then the L, C components defining equations are formulated in terms of ripple quantities. The state-space models are established assuming the proposed converter exhibits two different modes in one switching cycle. Based on these averaged models a small-signal analysis is performed to obtain the dynamic performance characterizing transfer functions. Later on these transfer functions are also used in the controller design. The proposed circuit is able to boost the load voltage to a higher value than the conventional quadratic boost converter reported in literature. A 48 V, 20 Watt prototype converter test circuit is built to supply the power at constant load voltage. A 12 V dc-battery is used as power source and 100 kHz switching frequency is adopted for the prototype converter operation both in simulation and experimentation. The proposed dc-dc converter effectiveness is demonstrated both in simulations and experimentation.