{"title":"一种基于电永磁吸附机理的主动磁鞍","authors":"Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang","doi":"10.1115/pvp2022-84528","DOIUrl":null,"url":null,"abstract":"\n In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Active Magnetic Saddle Based on Electro-Permanent Magnetic Adhesion Mechanism\",\"authors\":\"Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang\",\"doi\":\"10.1115/pvp2022-84528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.\",\"PeriodicalId\":23700,\"journal\":{\"name\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-84528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-84528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Active Magnetic Saddle Based on Electro-Permanent Magnetic Adhesion Mechanism
In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.