一种基于电永磁吸附机理的主动磁鞍

Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang
{"title":"一种基于电永磁吸附机理的主动磁鞍","authors":"Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang","doi":"10.1115/pvp2022-84528","DOIUrl":null,"url":null,"abstract":"\n In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Active Magnetic Saddle Based on Electro-Permanent Magnetic Adhesion Mechanism\",\"authors\":\"Hongsheng Zhang, Yanbin Li, K. Guo, Jian Jiang\",\"doi\":\"10.1115/pvp2022-84528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.\",\"PeriodicalId\":23700,\"journal\":{\"name\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-84528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-84528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于电永磁(EPM)技术的新型压力容器传输技术。磁力和由此产生的输运夹持力(TGF)是由可控永磁体施加的,而不是传统的电磁铁或永磁体技术,并且仅在加载或卸载TGF时需要电流。EPM系统控制方便,能耗低。根据EPM的特点和运输设备的要求,构建了包括磁性吸盘、基础梁腹板等部件的实验装置。EPM单元产生磁力,实现TGF的加载和卸载。本文首先通过理论推导和磁场模拟阐述了EPM输运技术的原理和优点。然后,对EPM卡盘和磁鞍进行了电路、磁场和拉伸等一系列实验。结果表明,所设计的系统所施加的TGF对于压力容器的输送是足够大的。此外,使用EPM运输系统节能效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Active Magnetic Saddle Based on Electro-Permanent Magnetic Adhesion Mechanism
In this paper, a novel transport technique for pressure vessels based on electro-permanent magnet (EPM) technology is proposed. The magnetic force and the resulting transport gripping force (TGF) are applied by controllable permanent magnets rather than conventional electromagnet or permanent magnet technology, and the current is only required at the moment of loading or unloading the TGF. The EPM system is convenient in control, and low in energy consumption. The experimental device including magnetic chuck, web of foundation girder and other components is constructed based on the EPM characteristics and requirements of transported equipment. The EPM units are used to generate magnetic force to realize loading and unloading of TGF. The principles and advantages of EPM transport technique are first elaborated with theoretical derivation and magnetic field simulation. Then, a series of experiments such as electrical circuit, magnetic field and tensile test were performed for the EPM chuck and magnetic saddle. It is demonstrated that the TGF applied by the designed system is large enough for the transportation of the pressure vessel. Also, the energy saving is significant using the EPM transportation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Temperature Design of 700°C Heat Exchanger in a Large Scale High-Temperature Thermal Energy Storage Performance Test Facility On the Effect of Hot-Box Size on Coke Drum Skirt Fatigue Life Numerical Approaches for Bolt Interactions in Flange Gasket Assemblies Experimental Investigation on the Fatigue Strength for Different Tightening Procedures and Materials in Metric Screws Study on Post-Buckling Behaviors of Lower Heads for Fracture Control of Reactor Vessels Under BDBE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1