Chi-Hieu Pham, Aurélien Ducournau, Ronan Fablet, F. Rousseau
{"title":"使用深度3D卷积网络的脑MRI超分辨率","authors":"Chi-Hieu Pham, Aurélien Ducournau, Ronan Fablet, F. Rousseau","doi":"10.1109/ISBI.2017.7950500","DOIUrl":null,"url":null,"abstract":"Example-based single image super-resolution (SR) has recently shown outcomes with high reconstruction performance. Several methods based on neural networks have successfully introduced techniques into SR problem. In this paper, we propose a three-dimensional (3D) convolutional neural network to generate high-resolution (HR) brain image from its input low-resolution (LR) with the help of patches of other HR brain images. Our work demonstrates the need of fitting data and network parameters for 3D brain MRI.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"461 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"Brain MRI super-resolution using deep 3D convolutional networks\",\"authors\":\"Chi-Hieu Pham, Aurélien Ducournau, Ronan Fablet, F. Rousseau\",\"doi\":\"10.1109/ISBI.2017.7950500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Example-based single image super-resolution (SR) has recently shown outcomes with high reconstruction performance. Several methods based on neural networks have successfully introduced techniques into SR problem. In this paper, we propose a three-dimensional (3D) convolutional neural network to generate high-resolution (HR) brain image from its input low-resolution (LR) with the help of patches of other HR brain images. Our work demonstrates the need of fitting data and network parameters for 3D brain MRI.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"461 1\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain MRI super-resolution using deep 3D convolutional networks
Example-based single image super-resolution (SR) has recently shown outcomes with high reconstruction performance. Several methods based on neural networks have successfully introduced techniques into SR problem. In this paper, we propose a three-dimensional (3D) convolutional neural network to generate high-resolution (HR) brain image from its input low-resolution (LR) with the help of patches of other HR brain images. Our work demonstrates the need of fitting data and network parameters for 3D brain MRI.