F. Rengers, T. Rapstine, Michael J. OlsenM.J. Olsen, K. Allstadt, R. M. Iverson, B. Leshchinsky, M. Obryk, Joel B. Smith
{"title":"利用高采样率激光雷达测量泥石流速度和地表几何形状","authors":"F. Rengers, T. Rapstine, Michael J. OlsenM.J. Olsen, K. Allstadt, R. M. Iverson, B. Leshchinsky, M. Obryk, Joel B. Smith","doi":"10.2113/EEG-D-20-00045","DOIUrl":null,"url":null,"abstract":"\n Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. These processes are readily observed but difficult to study or quantify because of the speed at which they evolve. Many methods for studying debris flows consist of point measurements (e.g., flow height or basal stresses), which are inherently limited in spatial coverage and cannot fully characterize the spatiotemporal evolution of a flow. In this study, we use terrestrial lidar to measure debris-flow profiles at high sampling rates to examine debris-flow movement with high temporal and spatial precision and accuracy. We acquired measurements during gate-release experiments at the U.S. Geological Survey debris-flow flume, a unique experimental facility where debris flows can be artificially generated at a large scale. A lidar scanner was used to record repeat topographic profiles of the moving debris flows along the length of the flume with a narrow swath width (∼1 mm) at a rate of 60 Hz. The high-resolution lidar profiles enabled us to quantify flow front velocity of the debris flows and provided an unprecedented record of the development and evolution of the flow structure with a sub-second time resolution. The findings of this study demonstrate how to obtain quantitative measurements of debris-flow movement. In addition, the data help us to quantitatively define the development of a saltating debris-flow front and roll waves behind the debris-flow front. Such measurements may help constrain future modeling efforts.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using High Sample Rate Lidar to Measure Debris-Flow Velocity and Surface Geometry\",\"authors\":\"F. Rengers, T. Rapstine, Michael J. OlsenM.J. Olsen, K. Allstadt, R. M. Iverson, B. Leshchinsky, M. Obryk, Joel B. Smith\",\"doi\":\"10.2113/EEG-D-20-00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. These processes are readily observed but difficult to study or quantify because of the speed at which they evolve. Many methods for studying debris flows consist of point measurements (e.g., flow height or basal stresses), which are inherently limited in spatial coverage and cannot fully characterize the spatiotemporal evolution of a flow. In this study, we use terrestrial lidar to measure debris-flow profiles at high sampling rates to examine debris-flow movement with high temporal and spatial precision and accuracy. We acquired measurements during gate-release experiments at the U.S. Geological Survey debris-flow flume, a unique experimental facility where debris flows can be artificially generated at a large scale. A lidar scanner was used to record repeat topographic profiles of the moving debris flows along the length of the flume with a narrow swath width (∼1 mm) at a rate of 60 Hz. The high-resolution lidar profiles enabled us to quantify flow front velocity of the debris flows and provided an unprecedented record of the development and evolution of the flow structure with a sub-second time resolution. The findings of this study demonstrate how to obtain quantitative measurements of debris-flow movement. In addition, the data help us to quantitatively define the development of a saltating debris-flow front and roll waves behind the debris-flow front. Such measurements may help constrain future modeling efforts.\",\"PeriodicalId\":50518,\"journal\":{\"name\":\"Environmental & Engineering Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental & Engineering Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/EEG-D-20-00045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/EEG-D-20-00045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Using High Sample Rate Lidar to Measure Debris-Flow Velocity and Surface Geometry
Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. These processes are readily observed but difficult to study or quantify because of the speed at which they evolve. Many methods for studying debris flows consist of point measurements (e.g., flow height or basal stresses), which are inherently limited in spatial coverage and cannot fully characterize the spatiotemporal evolution of a flow. In this study, we use terrestrial lidar to measure debris-flow profiles at high sampling rates to examine debris-flow movement with high temporal and spatial precision and accuracy. We acquired measurements during gate-release experiments at the U.S. Geological Survey debris-flow flume, a unique experimental facility where debris flows can be artificially generated at a large scale. A lidar scanner was used to record repeat topographic profiles of the moving debris flows along the length of the flume with a narrow swath width (∼1 mm) at a rate of 60 Hz. The high-resolution lidar profiles enabled us to quantify flow front velocity of the debris flows and provided an unprecedented record of the development and evolution of the flow structure with a sub-second time resolution. The findings of this study demonstrate how to obtain quantitative measurements of debris-flow movement. In addition, the data help us to quantitatively define the development of a saltating debris-flow front and roll waves behind the debris-flow front. Such measurements may help constrain future modeling efforts.
期刊介绍:
The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.