{"title":"基于Radau伪谱法的再入航天器多学科设计优化","authors":"Masoud Kabganian, S. M. Hashemi, J. Roshanian","doi":"10.3390/applmech3040067","DOIUrl":null,"url":null,"abstract":"The design and optimization of re-entry spacecraft or its subsystems is a multidisciplinary or multiobjective optimization problem by nature. Multidisciplinary design optimization (MDO) focuses on using numerical optimization in designing systems with several subsystems or disciplines that have interactions and independent actions. In the present paper, the system-level optimizer, trajectory, geometry and shape, aerodynamics, and aerothermodynamics differential equations, are converted to algebraic equations using the Radau pseudospectral method (RPM) since a spacecraft is a nonlinear, extensive, and sparse system. The solution to the problem with the help of MDO is reached by iterating all the disciplines together; one can simultaneously enhance the design, decrease the time and cost of the entire design cycle, and minimize the structural mass of a re-entry spacecraft. Considering various methods presented in earlier research works, a combined and innovative all-at-once (AAO), RPM-based MDO method, including the key subsystems in the design process of a re-entry capsule-shape spacecraft with a low lift-to-drag ratio (L/D), is presented. Considering the applicable state and control variables, various constraints, and parameters applied to several geometric shapes of a blunt capsule and using Apollo’s aerodynamic and aerothermodynamic coefficients, the optimized dimensions for a re-entry spacecraft are presented. The introduced optimization scheme led to a 17% mass reduction compared to the original mass of the Apollo vehicle. Fast computing and simplified models are used together in this method to analyze a wide range of vehicle shapes and entry types during conceptual design.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multidisciplinary Design Optimization of a Re-Entry Spacecraft via Radau Pseudospectral Method\",\"authors\":\"Masoud Kabganian, S. M. Hashemi, J. Roshanian\",\"doi\":\"10.3390/applmech3040067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and optimization of re-entry spacecraft or its subsystems is a multidisciplinary or multiobjective optimization problem by nature. Multidisciplinary design optimization (MDO) focuses on using numerical optimization in designing systems with several subsystems or disciplines that have interactions and independent actions. In the present paper, the system-level optimizer, trajectory, geometry and shape, aerodynamics, and aerothermodynamics differential equations, are converted to algebraic equations using the Radau pseudospectral method (RPM) since a spacecraft is a nonlinear, extensive, and sparse system. The solution to the problem with the help of MDO is reached by iterating all the disciplines together; one can simultaneously enhance the design, decrease the time and cost of the entire design cycle, and minimize the structural mass of a re-entry spacecraft. Considering various methods presented in earlier research works, a combined and innovative all-at-once (AAO), RPM-based MDO method, including the key subsystems in the design process of a re-entry capsule-shape spacecraft with a low lift-to-drag ratio (L/D), is presented. Considering the applicable state and control variables, various constraints, and parameters applied to several geometric shapes of a blunt capsule and using Apollo’s aerodynamic and aerothermodynamic coefficients, the optimized dimensions for a re-entry spacecraft are presented. The introduced optimization scheme led to a 17% mass reduction compared to the original mass of the Apollo vehicle. Fast computing and simplified models are used together in this method to analyze a wide range of vehicle shapes and entry types during conceptual design.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/applmech3040067\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech3040067","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Multidisciplinary Design Optimization of a Re-Entry Spacecraft via Radau Pseudospectral Method
The design and optimization of re-entry spacecraft or its subsystems is a multidisciplinary or multiobjective optimization problem by nature. Multidisciplinary design optimization (MDO) focuses on using numerical optimization in designing systems with several subsystems or disciplines that have interactions and independent actions. In the present paper, the system-level optimizer, trajectory, geometry and shape, aerodynamics, and aerothermodynamics differential equations, are converted to algebraic equations using the Radau pseudospectral method (RPM) since a spacecraft is a nonlinear, extensive, and sparse system. The solution to the problem with the help of MDO is reached by iterating all the disciplines together; one can simultaneously enhance the design, decrease the time and cost of the entire design cycle, and minimize the structural mass of a re-entry spacecraft. Considering various methods presented in earlier research works, a combined and innovative all-at-once (AAO), RPM-based MDO method, including the key subsystems in the design process of a re-entry capsule-shape spacecraft with a low lift-to-drag ratio (L/D), is presented. Considering the applicable state and control variables, various constraints, and parameters applied to several geometric shapes of a blunt capsule and using Apollo’s aerodynamic and aerothermodynamic coefficients, the optimized dimensions for a re-entry spacecraft are presented. The introduced optimization scheme led to a 17% mass reduction compared to the original mass of the Apollo vehicle. Fast computing and simplified models are used together in this method to analyze a wide range of vehicle shapes and entry types during conceptual design.
期刊介绍:
Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.