视觉因果探索框架案例研究:神户市暴雨与山洪暴发

J. Nonaka, Naohisa Sakamoto, Y. Maejima, K. Ono, K. Koyamada
{"title":"视觉因果探索框架案例研究:神户市暴雨与山洪暴发","authors":"J. Nonaka, Naohisa Sakamoto, Y. Maejima, K. Ono, K. Koyamada","doi":"10.1145/3139295.3139313","DOIUrl":null,"url":null,"abstract":"Extreme weather events, such as unexpected and sudden torrential rains, have received increasing attention by the specialists as well as ordinary people due to the possibility of causing severe material damages and human losses. Computational climate scientists have been working on high-resolution time-varying, multivariate numerical simulations of this kind of short-term event, which is still hard to predict. Local governments of the natural disaster prone countries, like Japan, usually possess disaster management sectors, responsible for storing the disaster related data and analysis results. In this paper, we present a visualization framework for enabling the interactive exploration of the causality, such as of the disasters and the related extreme weather events. The end users will be able to identify the spatio-temporal regions where there is a strong strength of cause-effect relationships. As a case study, we studied the unexpected torrential rain occurred in the city of Kobe, in 2008, where a flash flood, in the urban area, caused some human losses. We utilized high-resolution computational climate simulation results executed on a supercomputer, and the measured river level data obtained from the Civil Engineering Office of Kobe City. We expected that this kind of tool can assist the specialists for better understanding the cause-effect relationships between the extreme weather and the related disasters, as well as, the local government policy makers in the adaptation policies for the disaster risk reductions.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual causal exploration framework case study: a torrential rain and a flash flood in Kobe city\",\"authors\":\"J. Nonaka, Naohisa Sakamoto, Y. Maejima, K. Ono, K. Koyamada\",\"doi\":\"10.1145/3139295.3139313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme weather events, such as unexpected and sudden torrential rains, have received increasing attention by the specialists as well as ordinary people due to the possibility of causing severe material damages and human losses. Computational climate scientists have been working on high-resolution time-varying, multivariate numerical simulations of this kind of short-term event, which is still hard to predict. Local governments of the natural disaster prone countries, like Japan, usually possess disaster management sectors, responsible for storing the disaster related data and analysis results. In this paper, we present a visualization framework for enabling the interactive exploration of the causality, such as of the disasters and the related extreme weather events. The end users will be able to identify the spatio-temporal regions where there is a strong strength of cause-effect relationships. As a case study, we studied the unexpected torrential rain occurred in the city of Kobe, in 2008, where a flash flood, in the urban area, caused some human losses. We utilized high-resolution computational climate simulation results executed on a supercomputer, and the measured river level data obtained from the Civil Engineering Office of Kobe City. We expected that this kind of tool can assist the specialists for better understanding the cause-effect relationships between the extreme weather and the related disasters, as well as, the local government policy makers in the adaptation policies for the disaster risk reductions.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极端天气事件,如突如其来的暴雨,由于可能造成严重的物质损失和人员损失,越来越受到专家和普通民众的关注。计算气候科学家一直在研究这种短期事件的高分辨率时变、多变量数值模拟,这种短期事件仍然难以预测。日本等自然灾害多发国家的地方政府通常设有灾害管理部门,负责存储灾害相关数据和分析结果。在本文中,我们提出了一个可视化框架,使因果关系的交互式探索,如灾害和相关的极端天气事件。最终用户将能够识别因果关系很强的时空区域。作为一个案例研究,我们研究了2008年发生在神户市的意外暴雨,在那里,城市地区发生了山洪暴发,造成了一些人员损失。我们利用在超级计算机上执行的高分辨率计算气候模拟结果,以及神户市土木工程办公室提供的实测水位数据。我们期望这种工具可以帮助专家更好地了解极端天气与相关灾害之间的因果关系,以及帮助地方政府决策者制定减少灾害风险的适应政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A visual causal exploration framework case study: a torrential rain and a flash flood in Kobe city
Extreme weather events, such as unexpected and sudden torrential rains, have received increasing attention by the specialists as well as ordinary people due to the possibility of causing severe material damages and human losses. Computational climate scientists have been working on high-resolution time-varying, multivariate numerical simulations of this kind of short-term event, which is still hard to predict. Local governments of the natural disaster prone countries, like Japan, usually possess disaster management sectors, responsible for storing the disaster related data and analysis results. In this paper, we present a visualization framework for enabling the interactive exploration of the causality, such as of the disasters and the related extreme weather events. The end users will be able to identify the spatio-temporal regions where there is a strong strength of cause-effect relationships. As a case study, we studied the unexpected torrential rain occurred in the city of Kobe, in 2008, where a flash flood, in the urban area, caused some human losses. We utilized high-resolution computational climate simulation results executed on a supercomputer, and the measured river level data obtained from the Civil Engineering Office of Kobe City. We expected that this kind of tool can assist the specialists for better understanding the cause-effect relationships between the extreme weather and the related disasters, as well as, the local government policy makers in the adaptation policies for the disaster risk reductions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal tree reordering for group-in-a-box graph layouts Winding angle assisted particle tracing in distribution-based vector field Development of a visual analytics system for cell division dynamics in early C.elegans embryos A visual causal exploration framework case study: a torrential rain and a flash flood in Kobe city Parallel particle-based volume rendering using adaptive particle size adjustment technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1