再生铁增强聚苯乙烯复合材料的电特性评价

S. Abdulkareem, J. Ighalo, A. Adeniyi
{"title":"再生铁增强聚苯乙烯复合材料的电特性评价","authors":"S. Abdulkareem, J. Ighalo, A. Adeniyi","doi":"10.5829/ijee.2021.12.02.04","DOIUrl":null,"url":null,"abstract":"The prospective reuse of iron fillings from the milling machine and polystyrene in the solid waste streams in the production of plastic composites were considered in this study. The preparation, electrical properties, density, void fraction and particle distributions of the solvated polystyrene filled composites were all investigated as a function of recycled iron fillings concentration. The composites were developed by hand layup technique and cured by casting under ambient conditions (25 ± 2oC) for 7 days. The compared micrographs confirmed well-dispersed recycled iron fillings in polystyrene matrix and decreasing void fraction as iron filling increases in the composites. The highest electrical conductivity and density values of the composites were obtained at the highest iron filling composition of 40 wt% as 5.91 × 10-07 S/cm and 1.31 g/cm3, respectively. The developed iron polystyrene composite has good electrical properties, making it suitable to be an alternative material for metals.","PeriodicalId":14542,"journal":{"name":"Iranian Journal of Energy and Environment","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Evaluation of the Electrical Characteristics of Recycled Iron Reinforced Polystyrene Composites\",\"authors\":\"S. Abdulkareem, J. Ighalo, A. Adeniyi\",\"doi\":\"10.5829/ijee.2021.12.02.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prospective reuse of iron fillings from the milling machine and polystyrene in the solid waste streams in the production of plastic composites were considered in this study. The preparation, electrical properties, density, void fraction and particle distributions of the solvated polystyrene filled composites were all investigated as a function of recycled iron fillings concentration. The composites were developed by hand layup technique and cured by casting under ambient conditions (25 ± 2oC) for 7 days. The compared micrographs confirmed well-dispersed recycled iron fillings in polystyrene matrix and decreasing void fraction as iron filling increases in the composites. The highest electrical conductivity and density values of the composites were obtained at the highest iron filling composition of 40 wt% as 5.91 × 10-07 S/cm and 1.31 g/cm3, respectively. The developed iron polystyrene composite has good electrical properties, making it suitable to be an alternative material for metals.\",\"PeriodicalId\":14542,\"journal\":{\"name\":\"Iranian Journal of Energy and Environment\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2021.12.02.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2021.12.02.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究考虑了塑料复合材料生产中固体废物流中铣床和聚苯乙烯的铁填料的再利用前景。研究了溶剂化聚苯乙烯填充复合材料的制备、电学性能、密度、孔隙率和颗粒分布随回收铁填料浓度的变化规律。采用手工铺层法制备复合材料,在常温条件下(25±20℃)浇注固化7天。通过显微照片对比,证实了聚苯乙烯基体中有分散良好的再生铁填料,并且随着复合材料中铁填料的增加,空隙率降低。当铁填充量为40%时,复合材料的电导率和密度值最高,分别为5.91 × 10-07 S/cm和1.31 g/cm3。所研制的铁聚苯乙烯复合材料具有良好的电性能,适合作为金属的替代材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the Electrical Characteristics of Recycled Iron Reinforced Polystyrene Composites
The prospective reuse of iron fillings from the milling machine and polystyrene in the solid waste streams in the production of plastic composites were considered in this study. The preparation, electrical properties, density, void fraction and particle distributions of the solvated polystyrene filled composites were all investigated as a function of recycled iron fillings concentration. The composites were developed by hand layup technique and cured by casting under ambient conditions (25 ± 2oC) for 7 days. The compared micrographs confirmed well-dispersed recycled iron fillings in polystyrene matrix and decreasing void fraction as iron filling increases in the composites. The highest electrical conductivity and density values of the composites were obtained at the highest iron filling composition of 40 wt% as 5.91 × 10-07 S/cm and 1.31 g/cm3, respectively. The developed iron polystyrene composite has good electrical properties, making it suitable to be an alternative material for metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating a Combined Cooling, Heating and Power System from Energy and Exergy Point of View with RK-215 ICE Engine as a Prime Mover Providing Solutions to Improve Environmental Performance of Universities Based on GreenMetric System Application of Correlation Analysis Based on Principal Components in the Study of Global Temperature Changes Investigating the Effects of Blockage Ratio on the Performance of a Surface-piercing Propeller in Free Surface Water Tunnel Tests Energy Analysis for Two Production Systems of Cucumber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1