{"title":"旋转镀膜法制备In2O3薄膜","authors":"S. Benramache, Y. Aoun","doi":"10.2478/awutp-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the In2O3 thin films have been fabricated using a spin coating technique; this technique was prepared in our laboratory. The effect of the layer times (3, 5, 7 and 9 times) on optical and structural properties was investigated. In2O3 thin films were fabricated by dissolving 0.2 M of the indium chloride dehydrate InCl3.2H2O in the absolute H2O. The In2O3 thin films were crystallized at a temperature of 600 °C with pending time of 1 hour. The optical property shows that the prepared In2O3 thin films for 3 and 5 times have a transmission of about 85 %. The maximum bandgap energy was 3.69 eV for 5 times and the lowest Urbach energy was 0.47 eV for 9 times. From XDR all fabricated In2O3 thin films having one diffraction crystal plan is (222) peak intensity, this attribution have good crystalline structure with minimum crystallite size of the (222) plan is 59.69 nm. The prepared In2O3 thin films can be used in photovoltaic applications due to the existing phase and higher transmission.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spin Coating Method Fabricated of In2O3 Thin Films\",\"authors\":\"S. Benramache, Y. Aoun\",\"doi\":\"10.2478/awutp-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the In2O3 thin films have been fabricated using a spin coating technique; this technique was prepared in our laboratory. The effect of the layer times (3, 5, 7 and 9 times) on optical and structural properties was investigated. In2O3 thin films were fabricated by dissolving 0.2 M of the indium chloride dehydrate InCl3.2H2O in the absolute H2O. The In2O3 thin films were crystallized at a temperature of 600 °C with pending time of 1 hour. The optical property shows that the prepared In2O3 thin films for 3 and 5 times have a transmission of about 85 %. The maximum bandgap energy was 3.69 eV for 5 times and the lowest Urbach energy was 0.47 eV for 9 times. From XDR all fabricated In2O3 thin films having one diffraction crystal plan is (222) peak intensity, this attribution have good crystalline structure with minimum crystallite size of the (222) plan is 59.69 nm. The prepared In2O3 thin films can be used in photovoltaic applications due to the existing phase and higher transmission.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spin Coating Method Fabricated of In2O3 Thin Films
Abstract In this work, the In2O3 thin films have been fabricated using a spin coating technique; this technique was prepared in our laboratory. The effect of the layer times (3, 5, 7 and 9 times) on optical and structural properties was investigated. In2O3 thin films were fabricated by dissolving 0.2 M of the indium chloride dehydrate InCl3.2H2O in the absolute H2O. The In2O3 thin films were crystallized at a temperature of 600 °C with pending time of 1 hour. The optical property shows that the prepared In2O3 thin films for 3 and 5 times have a transmission of about 85 %. The maximum bandgap energy was 3.69 eV for 5 times and the lowest Urbach energy was 0.47 eV for 9 times. From XDR all fabricated In2O3 thin films having one diffraction crystal plan is (222) peak intensity, this attribution have good crystalline structure with minimum crystallite size of the (222) plan is 59.69 nm. The prepared In2O3 thin films can be used in photovoltaic applications due to the existing phase and higher transmission.