{"title":"生物腐蚀研究进展综述","authors":"I. Beech, C. Gaylarde","doi":"10.1590/S0001-37141999000300001","DOIUrl":null,"url":null,"abstract":"Biocorrosion processes at metal surfaces are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect cathodic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many modern investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mossbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed.","PeriodicalId":21211,"journal":{"name":"Revista De Microbiologia","volume":"70 4 1","pages":"117-190"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"293","resultStr":"{\"title\":\"Recent advances in the study of biocorrosion: an overview\",\"authors\":\"I. Beech, C. Gaylarde\",\"doi\":\"10.1590/S0001-37141999000300001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biocorrosion processes at metal surfaces are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect cathodic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many modern investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mossbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed.\",\"PeriodicalId\":21211,\"journal\":{\"name\":\"Revista De Microbiologia\",\"volume\":\"70 4 1\",\"pages\":\"117-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"293\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De Microbiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S0001-37141999000300001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Microbiologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S0001-37141999000300001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in the study of biocorrosion: an overview
Biocorrosion processes at metal surfaces are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect cathodic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many modern investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mossbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed.