基于支持向量机和伯努利混合模型的二值向量分类方法

Fahdah Alalyan, Nuha Zamzami, N. Bouguila
{"title":"基于支持向量机和伯努利混合模型的二值向量分类方法","authors":"Fahdah Alalyan, Nuha Zamzami, N. Bouguila","doi":"10.1109/SMC42975.2020.9283349","DOIUrl":null,"url":null,"abstract":"In the last decades, the development of generative/discriminative approaches for classifying different kinds of data has attracted scholars’ attention. Considering the strengths and weaknesses of both approaches, several hybrid learning approaches which combined the desirable properties of both have been developed. Our goal in this paper is to combine Support Vector Machines (SVMs), as a powerful classification tool, and Bernoulli mixture model in order to classify binary data. We propose using Bernoulli mixture model for generating probabilistic kernels for SVM based on information divergence. These kernels make intelligent use of unlabeled binary data to achieve good data discrimination. We demonstrate the merits of the proposed hybrid learning approach for the problem of classifying binary and texture images.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"89 1","pages":"1155-1160"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hybrid Approach Based on SVM and Bernoulli Mixture Model for Binary Vectors Classification\",\"authors\":\"Fahdah Alalyan, Nuha Zamzami, N. Bouguila\",\"doi\":\"10.1109/SMC42975.2020.9283349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, the development of generative/discriminative approaches for classifying different kinds of data has attracted scholars’ attention. Considering the strengths and weaknesses of both approaches, several hybrid learning approaches which combined the desirable properties of both have been developed. Our goal in this paper is to combine Support Vector Machines (SVMs), as a powerful classification tool, and Bernoulli mixture model in order to classify binary data. We propose using Bernoulli mixture model for generating probabilistic kernels for SVM based on information divergence. These kernels make intelligent use of unlabeled binary data to achieve good data discrimination. We demonstrate the merits of the proposed hybrid learning approach for the problem of classifying binary and texture images.\",\"PeriodicalId\":6718,\"journal\":{\"name\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"volume\":\"89 1\",\"pages\":\"1155-1160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC42975.2020.9283349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几十年里,生成/判别方法对不同类型数据进行分类的发展引起了学者们的关注。考虑到这两种方法的优缺点,已经开发了几种混合学习方法,将两者的理想特性结合在一起。本文的目标是将支持向量机(svm)这一强大的分类工具与伯努利混合模型相结合,对二值数据进行分类。提出了利用伯努利混合模型生成基于信息散度的支持向量机概率核。这些核可以智能地利用未标记的二进制数据来实现良好的数据识别。我们展示了所提出的混合学习方法在二值图像和纹理图像分类问题上的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Approach Based on SVM and Bernoulli Mixture Model for Binary Vectors Classification
In the last decades, the development of generative/discriminative approaches for classifying different kinds of data has attracted scholars’ attention. Considering the strengths and weaknesses of both approaches, several hybrid learning approaches which combined the desirable properties of both have been developed. Our goal in this paper is to combine Support Vector Machines (SVMs), as a powerful classification tool, and Bernoulli mixture model in order to classify binary data. We propose using Bernoulli mixture model for generating probabilistic kernels for SVM based on information divergence. These kernels make intelligent use of unlabeled binary data to achieve good data discrimination. We demonstrate the merits of the proposed hybrid learning approach for the problem of classifying binary and texture images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
At-the-Edge Data Processing for Low Latency High Throughput Machine Learning Algorithms Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials Mobility Aware Computation Offloading Model for Edge Computing Toward an Autonomous Workflow for Single Crystal Neutron Diffraction Virtual Infrastructure Twins: Software Testing Platforms for Computing-Instrument Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1