通过逐次低秩矩阵逼近的矩阵补全

IF 1.1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS EAI Endorsed Transactions on Scalable Information Systems Pub Date : 2023-01-04 DOI:10.4108/eetsis.v10i3.2878
Jin Wang, Z. Mo
{"title":"通过逐次低秩矩阵逼近的矩阵补全","authors":"Jin Wang, Z. Mo","doi":"10.4108/eetsis.v10i3.2878","DOIUrl":null,"url":null,"abstract":"In this paper, a successive low-rank matrix approximation algorithm is presented for the matrix completion (MC) based on hard thresholding method, which approximate the optimal low-rank matrix from rank-one matrix step by step. The algorithm enables the distance between the matrix with the observed elements and the projection on low-rank manifold to be minimum. The optimal low-rank matrix with observed elements is obtained when the distance is zero. In theory, convergence and convergent error of the new algorithm are analyzed in detail. Furthermore, some numerical experiments show that the algorithm is more effective in CPU time and precision than the orthogonal rank-one matrix pursuit(OR1MP) algorithm and the augmented Lagrange multiplier (ALM) method when the sampling rate is low.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"260 1","pages":"e6"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Completion via Successive Low-rank Matrix Approximation\",\"authors\":\"Jin Wang, Z. Mo\",\"doi\":\"10.4108/eetsis.v10i3.2878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a successive low-rank matrix approximation algorithm is presented for the matrix completion (MC) based on hard thresholding method, which approximate the optimal low-rank matrix from rank-one matrix step by step. The algorithm enables the distance between the matrix with the observed elements and the projection on low-rank manifold to be minimum. The optimal low-rank matrix with observed elements is obtained when the distance is zero. In theory, convergence and convergent error of the new algorithm are analyzed in detail. Furthermore, some numerical experiments show that the algorithm is more effective in CPU time and precision than the orthogonal rank-one matrix pursuit(OR1MP) algorithm and the augmented Lagrange multiplier (ALM) method when the sampling rate is low.\",\"PeriodicalId\":43034,\"journal\":{\"name\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"volume\":\"260 1\",\"pages\":\"e6\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.v10i3.2878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v10i3.2878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于硬阈值法的矩阵补全的逐次低秩矩阵逼近算法,该算法从秩一矩阵逐次逼近最优低秩矩阵。该算法使矩阵与观测元素之间的距离与低秩流形上的投影之间的距离最小。当距离为零时,得到具有观测元素的最优低秩矩阵。从理论上详细分析了新算法的收敛性和收敛误差。数值实验表明,当采样率较低时,该算法在CPU时间和精度上都优于正交秩一矩阵追踪(OR1MP)算法和增广拉格朗日乘子(ALM)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix Completion via Successive Low-rank Matrix Approximation
In this paper, a successive low-rank matrix approximation algorithm is presented for the matrix completion (MC) based on hard thresholding method, which approximate the optimal low-rank matrix from rank-one matrix step by step. The algorithm enables the distance between the matrix with the observed elements and the projection on low-rank manifold to be minimum. The optimal low-rank matrix with observed elements is obtained when the distance is zero. In theory, convergence and convergent error of the new algorithm are analyzed in detail. Furthermore, some numerical experiments show that the algorithm is more effective in CPU time and precision than the orthogonal rank-one matrix pursuit(OR1MP) algorithm and the augmented Lagrange multiplier (ALM) method when the sampling rate is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EAI Endorsed Transactions on Scalable Information Systems
EAI Endorsed Transactions on Scalable Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.80
自引率
15.40%
发文量
49
审稿时长
10 weeks
期刊最新文献
Factors influencing the employment intention of private college graduates based on robot control system design Japanese Flipped Classroom Knowledge Acquisition Based on Canvas Web-Based Learning Management System Effectiveness and perception of augmented reality in the teaching of structured programming fundamentals in university students Mechanical Design Method and Joint Simulation Analysis of Industrial Robots Based on Trajectory Planning Algorithm and Kinematics Global research on ubiquitous learning: A network and output approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1