近250年来喜马拉雅前陆盆地托尔萨河河道移动模式的重建

Pub Date : 2019-06-18 DOI:10.2478/bgeo-2019-0007
U. Saha, Soma Bhattacharya
{"title":"近250年来喜马拉雅前陆盆地托尔萨河河道移动模式的重建","authors":"U. Saha, Soma Bhattacharya","doi":"10.2478/bgeo-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract The varied physiography, incidences of high seasonal discharge, influences of neo-tectonic activity and the young geological foundation with less consolidated cohesive and non-cohesive sediment have left the Himalayan foreland basin a formidable ground, where silt-laden rivers tend to migrate frequently. A set of maps prepared after 1764, space photographs captured in 1970 and current satellite images from 2015 and 2017 were studied to reconstruct the fluvial dynamics of the Torsa River on the foreland basin of Sikkim-Bhutan Himalaya considering a time span of nearly 250 years. Evidence collected from colonial literature, the above-mentioned satellite images and a field survey, were combined to verify results taken from the old maps used as the base of the study. The application of satellite remote sensing and analysis of the topographic signatures of the palaeo-courses in the form of the palaeo-levee, abandoned courses and ox-bow lakes were the major operational attributes in this study. As a consequence of the channel migration of Torsa River since 1764, the historical floodplain of Torsa has been topographically marked by beheaded old distributaries, a misfit channel system and the presence of abandoned segments. Morphometric changes in the old courses, major flood events and neo-tectonic activity guided an overall trend of channel migration eastwards and has led to a couple of channel oscillation events in the Torsa River over the last 250 years. The mechanism of the avulsion events was thoroughly driven by sedimentation-induced channel morphometric changes and occasional high discharge.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reconstructing the channel shifting pattern of the Torsa River on the Himalayan Foreland Basin over the last 250 years\",\"authors\":\"U. Saha, Soma Bhattacharya\",\"doi\":\"10.2478/bgeo-2019-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The varied physiography, incidences of high seasonal discharge, influences of neo-tectonic activity and the young geological foundation with less consolidated cohesive and non-cohesive sediment have left the Himalayan foreland basin a formidable ground, where silt-laden rivers tend to migrate frequently. A set of maps prepared after 1764, space photographs captured in 1970 and current satellite images from 2015 and 2017 were studied to reconstruct the fluvial dynamics of the Torsa River on the foreland basin of Sikkim-Bhutan Himalaya considering a time span of nearly 250 years. Evidence collected from colonial literature, the above-mentioned satellite images and a field survey, were combined to verify results taken from the old maps used as the base of the study. The application of satellite remote sensing and analysis of the topographic signatures of the palaeo-courses in the form of the palaeo-levee, abandoned courses and ox-bow lakes were the major operational attributes in this study. As a consequence of the channel migration of Torsa River since 1764, the historical floodplain of Torsa has been topographically marked by beheaded old distributaries, a misfit channel system and the presence of abandoned segments. Morphometric changes in the old courses, major flood events and neo-tectonic activity guided an overall trend of channel migration eastwards and has led to a couple of channel oscillation events in the Torsa River over the last 250 years. The mechanism of the avulsion events was thoroughly driven by sedimentation-induced channel morphometric changes and occasional high discharge.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bgeo-2019-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bgeo-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

喜马拉雅前陆盆地多变的地貌、高季节性流量的发生、新构造活动的影响以及固结黏结和非黏结沉积物较少的年轻地质基础,使其成为一个充满泥沙的河流往往频繁迁移的强大地面。研究人员研究了1764年以后制作的一组地图、1970年拍摄的太空照片以及2015年和2017年的当前卫星图像,以重建锡金-不丹喜马拉雅前陆盆地托尔萨河的河流动力学,考虑了近250年的时间跨度。从殖民地文献中收集的证据、上述卫星图像和实地调查相结合,以核实从作为研究基础的旧地图中取得的结果。卫星遥感的应用和古堤防、废弃河道、牛轭湖等古河道的地形特征分析是本研究的主要操作属性。自1764年以来,由于托尔萨河的河道迁移,托尔萨河的历史泛滥平原在地形上以被切断的旧支流、不匹配的河道系统和废弃河段的存在为标志。旧河道的形态变化、大洪水事件和新构造活动指导了河道东移的总体趋势,并导致了托尔萨河250年来的几次河道振荡事件。崩裂事件的机制完全是由沉积引起的河道形态变化和偶尔的高流量驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Reconstructing the channel shifting pattern of the Torsa River on the Himalayan Foreland Basin over the last 250 years
Abstract The varied physiography, incidences of high seasonal discharge, influences of neo-tectonic activity and the young geological foundation with less consolidated cohesive and non-cohesive sediment have left the Himalayan foreland basin a formidable ground, where silt-laden rivers tend to migrate frequently. A set of maps prepared after 1764, space photographs captured in 1970 and current satellite images from 2015 and 2017 were studied to reconstruct the fluvial dynamics of the Torsa River on the foreland basin of Sikkim-Bhutan Himalaya considering a time span of nearly 250 years. Evidence collected from colonial literature, the above-mentioned satellite images and a field survey, were combined to verify results taken from the old maps used as the base of the study. The application of satellite remote sensing and analysis of the topographic signatures of the palaeo-courses in the form of the palaeo-levee, abandoned courses and ox-bow lakes were the major operational attributes in this study. As a consequence of the channel migration of Torsa River since 1764, the historical floodplain of Torsa has been topographically marked by beheaded old distributaries, a misfit channel system and the presence of abandoned segments. Morphometric changes in the old courses, major flood events and neo-tectonic activity guided an overall trend of channel migration eastwards and has led to a couple of channel oscillation events in the Torsa River over the last 250 years. The mechanism of the avulsion events was thoroughly driven by sedimentation-induced channel morphometric changes and occasional high discharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1