{"title":"计算军事战术规划系统","authors":"R. Kewley, M. Embrechts","doi":"10.1109/TSMCC.2002.801352","DOIUrl":null,"url":null,"abstract":"A computational system called fuzzy-genetic decision optimization combines two soft computing methods, genetic optimization and fuzzy ordinal preference, and a traditional hard computing method, stochastic system simulation, to tackle the difficult task of generating battle plans for military tactical forces. Planning for a tactical military battle is a complex, high-dimensional task which often bedevils experienced professionals. In fuzzy-genetic decision optimization, the military commander enters his battle outcome preferences into a user interface to generate a fuzzy ordinal preference model that scores his preference for any battle outcome. A genetic algorithm iteratively generates populations of battle plans for evaluation in a stochastic combat simulation. The fuzzy preference model converts the simulation results into a fitness value for each population member, allowing the genetic algorithm to generate the next population. Evolution continues until the system produces a final population of high-performance plans which achieve the commander's intent for the mission. Analysis of experimental results shows that co-evolution of friendly and enemy plans by competing genetic algorithms improves the performance of the planning system. If allowed to evolve long enough, the plans produced by automated algorithms had a significantly higher mean performance than those generated by experienced military experts.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"15 1","pages":"161-171"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Computational military tactical planning system\",\"authors\":\"R. Kewley, M. Embrechts\",\"doi\":\"10.1109/TSMCC.2002.801352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational system called fuzzy-genetic decision optimization combines two soft computing methods, genetic optimization and fuzzy ordinal preference, and a traditional hard computing method, stochastic system simulation, to tackle the difficult task of generating battle plans for military tactical forces. Planning for a tactical military battle is a complex, high-dimensional task which often bedevils experienced professionals. In fuzzy-genetic decision optimization, the military commander enters his battle outcome preferences into a user interface to generate a fuzzy ordinal preference model that scores his preference for any battle outcome. A genetic algorithm iteratively generates populations of battle plans for evaluation in a stochastic combat simulation. The fuzzy preference model converts the simulation results into a fitness value for each population member, allowing the genetic algorithm to generate the next population. Evolution continues until the system produces a final population of high-performance plans which achieve the commander's intent for the mission. Analysis of experimental results shows that co-evolution of friendly and enemy plans by competing genetic algorithms improves the performance of the planning system. If allowed to evolve long enough, the plans produced by automated algorithms had a significantly higher mean performance than those generated by experienced military experts.\",\"PeriodicalId\":55005,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"volume\":\"15 1\",\"pages\":\"161-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCC.2002.801352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2002.801352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational system called fuzzy-genetic decision optimization combines two soft computing methods, genetic optimization and fuzzy ordinal preference, and a traditional hard computing method, stochastic system simulation, to tackle the difficult task of generating battle plans for military tactical forces. Planning for a tactical military battle is a complex, high-dimensional task which often bedevils experienced professionals. In fuzzy-genetic decision optimization, the military commander enters his battle outcome preferences into a user interface to generate a fuzzy ordinal preference model that scores his preference for any battle outcome. A genetic algorithm iteratively generates populations of battle plans for evaluation in a stochastic combat simulation. The fuzzy preference model converts the simulation results into a fitness value for each population member, allowing the genetic algorithm to generate the next population. Evolution continues until the system produces a final population of high-performance plans which achieve the commander's intent for the mission. Analysis of experimental results shows that co-evolution of friendly and enemy plans by competing genetic algorithms improves the performance of the planning system. If allowed to evolve long enough, the plans produced by automated algorithms had a significantly higher mean performance than those generated by experienced military experts.