Mona Noori Hosseini, S. Gharibzadeh, P. Gifani, S. Babaei, B. Makki
{"title":"基于循环神经网络的选择性动态主成分分析","authors":"Mona Noori Hosseini, S. Gharibzadeh, P. Gifani, S. Babaei, B. Makki","doi":"10.1109/ICNC.2008.810","DOIUrl":null,"url":null,"abstract":"In the last decades, considerable attention has been focused on development of bio-inspired systems. This paper employs the principals of information processing in the Basal Ganglia (BG) to develop a new method for selectively extracting dynamic principal components (DPCs) of multidimensional datasets. The DPCs are extracted by are current structure of auto-associative neural network and selectivity is achieved by means of a reinforcement-like signal which modifies the desired outputs and the learning coefficient of the network. Performance of the model is evaluated through two experiments; at first, the DPCs of a stock price database are extracted and then, speech compression capability of the method is checked which illustrates the efficiency of the proposed approach.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"130 1","pages":"306-310"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selective Dynamic Principal Component Analysis Using Recurrent Neural Networks\",\"authors\":\"Mona Noori Hosseini, S. Gharibzadeh, P. Gifani, S. Babaei, B. Makki\",\"doi\":\"10.1109/ICNC.2008.810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, considerable attention has been focused on development of bio-inspired systems. This paper employs the principals of information processing in the Basal Ganglia (BG) to develop a new method for selectively extracting dynamic principal components (DPCs) of multidimensional datasets. The DPCs are extracted by are current structure of auto-associative neural network and selectivity is achieved by means of a reinforcement-like signal which modifies the desired outputs and the learning coefficient of the network. Performance of the model is evaluated through two experiments; at first, the DPCs of a stock price database are extracted and then, speech compression capability of the method is checked which illustrates the efficiency of the proposed approach.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"130 1\",\"pages\":\"306-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selective Dynamic Principal Component Analysis Using Recurrent Neural Networks
In the last decades, considerable attention has been focused on development of bio-inspired systems. This paper employs the principals of information processing in the Basal Ganglia (BG) to develop a new method for selectively extracting dynamic principal components (DPCs) of multidimensional datasets. The DPCs are extracted by are current structure of auto-associative neural network and selectivity is achieved by means of a reinforcement-like signal which modifies the desired outputs and the learning coefficient of the network. Performance of the model is evaluated through two experiments; at first, the DPCs of a stock price database are extracted and then, speech compression capability of the method is checked which illustrates the efficiency of the proposed approach.