定量性状位点和差异基因表达分析揭示了六倍体甘薯[Ipomoea batatas (L.) Lam.]β-胡萝卜素和淀粉含量负相关的遗传基础。

Dorcus C Gemenet, Guilherme da Silva Pereira, Bert De Boeck, Joshua C Wood, Marcelo Mollinari, Bode A Olukolu, Federico Diaz, Veronica Mosquera, Reuben T Ssali, Maria David, Mercy N Kitavi, Gabriela Burgos, Thomas Zum Felde, Marc Ghislain, Edward Carey, Jolien Swanckaert, Lachlan J M Coin, Zhangjun Fei, John P Hamilton, Benard Yada, G Craig Yencho, Zhao-Bang Zeng, Robert O M Mwanga, Awais Khan, Wolfgang J Gruneberg, C Robin Buell
{"title":"定量性状位点和差异基因表达分析揭示了六倍体甘薯[Ipomoea batatas (L.) Lam.]β-胡萝卜素和淀粉含量负相关的遗传基础。","authors":"Dorcus C Gemenet, Guilherme da Silva Pereira, Bert De Boeck, Joshua C Wood, Marcelo Mollinari, Bode A Olukolu, Federico Diaz, Veronica Mosquera, Reuben T Ssali, Maria David, Mercy N Kitavi, Gabriela Burgos, Thomas Zum Felde, Marc Ghislain, Edward Carey, Jolien Swanckaert, Lachlan J M Coin, Zhangjun Fei, John P Hamilton, Benard Yada, G Craig Yencho, Zhao-Bang Zeng, Robert O M Mwanga, Awais Khan, Wolfgang J Gruneberg, C Robin Buell","doi":"10.1007/s00122-019-03437-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F<sub>1</sub> progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.</p>","PeriodicalId":17203,"journal":{"name":"Journal of The American Dietetic Association","volume":"1 1","pages":"23-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.].\",\"authors\":\"Dorcus C Gemenet, Guilherme da Silva Pereira, Bert De Boeck, Joshua C Wood, Marcelo Mollinari, Bode A Olukolu, Federico Diaz, Veronica Mosquera, Reuben T Ssali, Maria David, Mercy N Kitavi, Gabriela Burgos, Thomas Zum Felde, Marc Ghislain, Edward Carey, Jolien Swanckaert, Lachlan J M Coin, Zhangjun Fei, John P Hamilton, Benard Yada, G Craig Yencho, Zhao-Bang Zeng, Robert O M Mwanga, Awais Khan, Wolfgang J Gruneberg, C Robin Buell\",\"doi\":\"10.1007/s00122-019-03437-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F<sub>1</sub> progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.</p>\",\"PeriodicalId\":17203,\"journal\":{\"name\":\"Journal of The American Dietetic Association\",\"volume\":\"1 1\",\"pages\":\"23-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Dietetic Association\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-019-03437-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Dietetic Association","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-019-03437-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键信息甘薯中的β-胡萝卜素含量与橙基因和植物烯合成酶基因有关;由于植物烯合成酶与蔗糖合成酶的物理联系,β-胡萝卜素与淀粉含量呈负相关。这两个性状之间的负相关是导致甘薯营养质量低下的原因之一,尤其是在撒哈拉以南非洲地区。我们利用由橙色瓤甘薯品种和非橙色瓤甘薯品种杂交产生的 315 个 F1 后代组成的双亲图谱群体,在第三连接群(LG3)和第十二连接群(LG12)上鉴定出了影响淀粉、β-胡萝卜素及其相关性状、干物质和肉色的两个主要数量性状位点(QTL)。对亲本单倍型的分析表明,在携带 LG3 基因座橙肉亲本单倍型的基因型中,这两个区域起着多效作用,降低了淀粉含量,增加了 β-胡萝卜素。植物烯合成酶和蔗糖合成酶是位于 LG3 上 QTL 中的限速基因和关联基因,分别参与类胡萝卜素和淀粉的生物合成。位于 LG12 上 QTL 中的 Orange 基因,即染色质生物发生的分子开关,虽然在亲本基因型的发育根中没有差异表达,但也有表达。我们的结论是,这两个 QTL 区域以顺式和反式方式共同作用,抑制淀粉质中的淀粉生物合成,并增强橙肉甘薯的染色体生物发生、类胡萝卜素生物合成和积累。了解淀粉和β-胡萝卜素之间这种负相关的遗传基础,将为未来针对甘薯的食品和营养安全的甘薯育种战略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.].

Key message: β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform. Early adversity and emotional awareness: A partial confirmation and extension of their relationship. Comparison of Outcomes of Early Versus Late Tracheostomy in the Treatment of Mechanically Ventilated Critically ill Patients. A Case Report of Chondromyxoid Fibroma of the Nasal Cavity. Effects of COVID-19 Infection and Vaccines on Patients with Epilepsy: Real-Life Experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1