胃肠病学图像分割:聚类和拟合模型方法的比较

F. Riaz, P. Pimentel-Nunes, M. Dinis-Ribeiro, M. Coimbra
{"title":"胃肠病学图像分割:聚类和拟合模型方法的比较","authors":"F. Riaz, P. Pimentel-Nunes, M. Dinis-Ribeiro, M. Coimbra","doi":"10.1109/CBMS.2013.6627872","DOIUrl":null,"url":null,"abstract":"Segmentation is a vital step for pattern recognition systems used in in-body imaging scenarios. In this paper we compare the performance of three popular segmentation algorithms (mean shift, normalized cuts, level-sets) when applied to two distinct in-body imaging scenarios: chromoen-doscopy and narrow-band imaging. Observation shows that the model-based algorithm did not perform well, when compared to its segmentation by clustering alternatives. Normalized cuts obtained the best performance although future work hints that texture similarity should be further explored in order to increase segmentation performance in this type of scenarios.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"88 1","pages":"550-551"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of gastroenterology images: A comparison between clustering and fitting models approaches\",\"authors\":\"F. Riaz, P. Pimentel-Nunes, M. Dinis-Ribeiro, M. Coimbra\",\"doi\":\"10.1109/CBMS.2013.6627872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation is a vital step for pattern recognition systems used in in-body imaging scenarios. In this paper we compare the performance of three popular segmentation algorithms (mean shift, normalized cuts, level-sets) when applied to two distinct in-body imaging scenarios: chromoen-doscopy and narrow-band imaging. Observation shows that the model-based algorithm did not perform well, when compared to its segmentation by clustering alternatives. Normalized cuts obtained the best performance although future work hints that texture similarity should be further explored in order to increase segmentation performance in this type of scenarios.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"88 1\",\"pages\":\"550-551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分割是用于人体成像场景的模式识别系统的关键步骤。在本文中,我们比较了三种流行的分割算法(均值移位,归一化切割,水平集)在两种不同的体内成像场景下的性能:彩色内镜和窄带成像。观察表明,与聚类分割相比,基于模型的分割算法表现不佳。归一化切割获得了最好的性能,尽管未来的工作表明,为了提高这类场景下的分割性能,纹理相似性需要进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of gastroenterology images: A comparison between clustering and fitting models approaches
Segmentation is a vital step for pattern recognition systems used in in-body imaging scenarios. In this paper we compare the performance of three popular segmentation algorithms (mean shift, normalized cuts, level-sets) when applied to two distinct in-body imaging scenarios: chromoen-doscopy and narrow-band imaging. Observation shows that the model-based algorithm did not perform well, when compared to its segmentation by clustering alternatives. Normalized cuts obtained the best performance although future work hints that texture similarity should be further explored in order to increase segmentation performance in this type of scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of nailfold capillaries from microscopy video sequences Efficient textural model-based mammogram enhancement Contextual anomalies in medical data POCS-based super-resolution for HD endoscopy video frames Communication between agents for interoperability in area health service platform using JADE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1