4H‐SiC中各向异性电子迁移率的实验与理论研究

R. Ishikawa, Hajime Tanaka, M. Kaneko, T. Kimoto
{"title":"4H‐SiC中各向异性电子迁移率的实验与理论研究","authors":"R. Ishikawa, Hajime Tanaka, M. Kaneko, T. Kimoto","doi":"10.1002/pssb.202300275","DOIUrl":null,"url":null,"abstract":"Electron mobility parallel to the c‐axis in 4H‐SiC is experimentally determined by Hall effect measurements over wide donor density and temperature ranges (6 × 1014–3 × 1018 cm−3 and 140–600 K), and it is compared with that perpendicular to the c‐axis obtained for the same conditions. Empirical equations for the mobility along both directions are determined as functions of donor density and temperature, which contribute to the simulation and designing of SiC devices. The origin of the mobility anisotropy is discussed, focusing on the electron effective mass anisotropy. For a precise analysis, taking into account the effect of electrons at a higher energy region than the conduction band bottom, an average electron effective mass considering the energy distribution is theoretically calculated from the band structure of SiC. As a result, it is clarified that the electron mobility anisotropy including its temperature dependence is explained by the average electron effective mass anisotropy.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"583 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Theoretical Study on Anisotropic Electron Mobility in 4H‐SiC\",\"authors\":\"R. Ishikawa, Hajime Tanaka, M. Kaneko, T. Kimoto\",\"doi\":\"10.1002/pssb.202300275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron mobility parallel to the c‐axis in 4H‐SiC is experimentally determined by Hall effect measurements over wide donor density and temperature ranges (6 × 1014–3 × 1018 cm−3 and 140–600 K), and it is compared with that perpendicular to the c‐axis obtained for the same conditions. Empirical equations for the mobility along both directions are determined as functions of donor density and temperature, which contribute to the simulation and designing of SiC devices. The origin of the mobility anisotropy is discussed, focusing on the electron effective mass anisotropy. For a precise analysis, taking into account the effect of electrons at a higher energy region than the conduction band bottom, an average electron effective mass considering the energy distribution is theoretically calculated from the band structure of SiC. As a result, it is clarified that the electron mobility anisotropy including its temperature dependence is explained by the average electron effective mass anisotropy.\",\"PeriodicalId\":20107,\"journal\":{\"name\":\"physica status solidi (b)\",\"volume\":\"583 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (b)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202300275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在较宽的供体密度和温度范围(6 × 1014-3 × 1018 cm−3和140-600 K)下,通过霍尔效应测量,实验确定了4H‐SiC中平行于c轴的电子迁移率,并将其与相同条件下垂直于c轴的电子迁移率进行了比较。确定了两个方向的迁移率随施主密度和温度的函数的经验方程,为SiC器件的仿真和设计提供了依据。讨论了迁移率各向异性的来源,重点讨论了电子有效质量各向异性。为了进行精确的分析,考虑到电子在比导带底部更高能量区域的影响,从SiC的能带结构理论上计算出考虑能量分布的平均电子有效质量。结果表明,电子迁移率各向异性及其温度依赖性可以用平均电子有效质量各向异性来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Theoretical Study on Anisotropic Electron Mobility in 4H‐SiC
Electron mobility parallel to the c‐axis in 4H‐SiC is experimentally determined by Hall effect measurements over wide donor density and temperature ranges (6 × 1014–3 × 1018 cm−3 and 140–600 K), and it is compared with that perpendicular to the c‐axis obtained for the same conditions. Empirical equations for the mobility along both directions are determined as functions of donor density and temperature, which contribute to the simulation and designing of SiC devices. The origin of the mobility anisotropy is discussed, focusing on the electron effective mass anisotropy. For a precise analysis, taking into account the effect of electrons at a higher energy region than the conduction band bottom, an average electron effective mass considering the energy distribution is theoretically calculated from the band structure of SiC. As a result, it is clarified that the electron mobility anisotropy including its temperature dependence is explained by the average electron effective mass anisotropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1