SHaPE:一种新的基于共识的人再识别系统决策图论算法

Arko Barman, S. Shah
{"title":"SHaPE:一种新的基于共识的人再识别系统决策图论算法","authors":"Arko Barman, S. Shah","doi":"10.1109/ICCV.2017.127","DOIUrl":null,"url":null,"abstract":"Person re-identification is a challenge in video-based surveillance where the goal is to identify the same person in different camera views. In recent years, many algorithms have been proposed that approach this problem by designing suitable feature representations for images of persons or by training appropriate distance metrics that learn to distinguish between images of different persons. Aggregating the results from multiple algorithms for person re-identification is a relatively less-explored area of research. In this paper, we formulate an algorithm that maps the ranking process in a person re-identification algorithm to a problem in graph theory. We then extend this formulation to allow for the use of results from multiple algorithms to make a consensus-based decision for the person re-identification problem. The algorithm is unsupervised and takes into account only the matching scores generated by multiple algorithms for creating a consensus of results. Further, we show how the graph theoretic problem can be solved by a two-step process. First, we obtain a rough estimate of the solution using a greedy algorithm. Then, we extend the construction of the proposed graph so that the problem can be efficiently solved by means of Ant Colony Optimization, a heuristic path-searching algorithm for complex graphs. While we present the algorithm in the context of person reidentification, it can potentially be applied to the general problem of ranking items based on a consensus of multiple sets of scores or metric values.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"83 1","pages":"1124-1133"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"SHaPE: A Novel Graph Theoretic Algorithm for Making Consensus-Based Decisions in Person Re-identification Systems\",\"authors\":\"Arko Barman, S. Shah\",\"doi\":\"10.1109/ICCV.2017.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification is a challenge in video-based surveillance where the goal is to identify the same person in different camera views. In recent years, many algorithms have been proposed that approach this problem by designing suitable feature representations for images of persons or by training appropriate distance metrics that learn to distinguish between images of different persons. Aggregating the results from multiple algorithms for person re-identification is a relatively less-explored area of research. In this paper, we formulate an algorithm that maps the ranking process in a person re-identification algorithm to a problem in graph theory. We then extend this formulation to allow for the use of results from multiple algorithms to make a consensus-based decision for the person re-identification problem. The algorithm is unsupervised and takes into account only the matching scores generated by multiple algorithms for creating a consensus of results. Further, we show how the graph theoretic problem can be solved by a two-step process. First, we obtain a rough estimate of the solution using a greedy algorithm. Then, we extend the construction of the proposed graph so that the problem can be efficiently solved by means of Ant Colony Optimization, a heuristic path-searching algorithm for complex graphs. While we present the algorithm in the context of person reidentification, it can potentially be applied to the general problem of ranking items based on a consensus of multiple sets of scores or metric values.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"83 1\",\"pages\":\"1124-1133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

人员再识别是基于视频的监控中的一个挑战,其目标是在不同的摄像机视图中识别同一个人。近年来,已经提出了许多算法,通过为人物图像设计合适的特征表示或通过训练适当的距离度量来学习区分不同人物的图像来解决这个问题。将多种算法的结果聚合在一起进行人员再识别是一个相对较少探索的研究领域。本文提出了一种将人再识别算法中的排序过程映射到图论中的问题的算法。然后,我们扩展了这个公式,允许使用来自多个算法的结果来为人员重新识别问题做出基于共识的决策。该算法是无监督的,并且只考虑由多个算法生成的匹配分数来创建一致的结果。进一步,我们展示了如何通过一个两步过程来解决图论问题。首先,我们使用贪心算法得到解的粗略估计。然后,我们扩展了所提出的图的构造,使得问题可以通过蚁群优化算法(一种针对复杂图的启发式路径搜索算法)有效地求解。虽然我们在人员重新识别的上下文中提出了该算法,但它可以潜在地应用于基于多组分数或度量值的共识对项目进行排名的一般问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHaPE: A Novel Graph Theoretic Algorithm for Making Consensus-Based Decisions in Person Re-identification Systems
Person re-identification is a challenge in video-based surveillance where the goal is to identify the same person in different camera views. In recent years, many algorithms have been proposed that approach this problem by designing suitable feature representations for images of persons or by training appropriate distance metrics that learn to distinguish between images of different persons. Aggregating the results from multiple algorithms for person re-identification is a relatively less-explored area of research. In this paper, we formulate an algorithm that maps the ranking process in a person re-identification algorithm to a problem in graph theory. We then extend this formulation to allow for the use of results from multiple algorithms to make a consensus-based decision for the person re-identification problem. The algorithm is unsupervised and takes into account only the matching scores generated by multiple algorithms for creating a consensus of results. Further, we show how the graph theoretic problem can be solved by a two-step process. First, we obtain a rough estimate of the solution using a greedy algorithm. Then, we extend the construction of the proposed graph so that the problem can be efficiently solved by means of Ant Colony Optimization, a heuristic path-searching algorithm for complex graphs. While we present the algorithm in the context of person reidentification, it can potentially be applied to the general problem of ranking items based on a consensus of multiple sets of scores or metric values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1