{"title":"利用 BIGA 云计算平台分析 GWAS 摘要统计中的双变量跨性状遗传结构。","authors":"Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao","doi":"10.1101/2023.04.28.538585","DOIUrl":null,"url":null,"abstract":"<p><p>As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.</p>","PeriodicalId":17203,"journal":{"name":"Journal of The American Dietetic Association","volume":"32 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.\",\"authors\":\"Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao\",\"doi\":\"10.1101/2023.04.28.538585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.</p>\",\"PeriodicalId\":17203,\"journal\":{\"name\":\"Journal of The American Dietetic Association\",\"volume\":\"32 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Dietetic Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.04.28.538585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Dietetic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.28.538585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.
As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.