{"title":"动力学模型和吸附等温线的研究:胰岛素与合成羟基磷灰石相互作用的应用","authors":"A. E. Rhilassi, M. B. Ziatni","doi":"10.5267/j.ccl.2022.11.001","DOIUrl":null,"url":null,"abstract":"The non-stoichiometric, calcium-deficient hydroxyapatite was prepared through a low-temperature from aqueous solutions method and characterized using Physico-chemical methods. The potential of this hydroxyapatite to adsorb and release insulin from aqueous solutions was evaluated under physiological conditions. The effect of contact time and initial concentration were studied in batch experiments. The adsorption rate reached up to 81±5% in the first half-hour of contact, while the release rate of insulin incubation was about 41 ± 5% after 1 hour. The pseudo-first-order, pseudo-second-order, Elovich equation, Weber and Morris intraparticle diffusion model and Bangham’s pore diffusion model were applied to study the kinetics of the adsorption process. The pseudo-second-order kinetic model provided the best correlation R2(0.998) of the used experimental data compared to the other models. The adsorption of insulin onto hydroxyapatite was correlated well R2(0.998) with the Langmuir model as compared to Freundlich, Temkin and Dubinin–Kaganer–Radushkevich (D-K-R) models, with a maximum adsorption capacity of 24.46 mg/g. The isotherms parameters values of ΔG0, b_t and E show that the adsorption process is favorable, spontaneous, exothermic, and controlled by physisorption. The point of zero charge (pHZPC) of hydroxyapatite and the isoelectric point (pI) of insulin indicate that the interaction of insulin molecules with prepared apatite can be well described as an ions exchange reaction.","PeriodicalId":10942,"journal":{"name":"Current Chemistry Letters","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Studies of kinetic models and adsorption isotherms: application on the interaction of insulin with synthetic hydroxyapatite\",\"authors\":\"A. E. Rhilassi, M. B. Ziatni\",\"doi\":\"10.5267/j.ccl.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-stoichiometric, calcium-deficient hydroxyapatite was prepared through a low-temperature from aqueous solutions method and characterized using Physico-chemical methods. The potential of this hydroxyapatite to adsorb and release insulin from aqueous solutions was evaluated under physiological conditions. The effect of contact time and initial concentration were studied in batch experiments. The adsorption rate reached up to 81±5% in the first half-hour of contact, while the release rate of insulin incubation was about 41 ± 5% after 1 hour. The pseudo-first-order, pseudo-second-order, Elovich equation, Weber and Morris intraparticle diffusion model and Bangham’s pore diffusion model were applied to study the kinetics of the adsorption process. The pseudo-second-order kinetic model provided the best correlation R2(0.998) of the used experimental data compared to the other models. The adsorption of insulin onto hydroxyapatite was correlated well R2(0.998) with the Langmuir model as compared to Freundlich, Temkin and Dubinin–Kaganer–Radushkevich (D-K-R) models, with a maximum adsorption capacity of 24.46 mg/g. The isotherms parameters values of ΔG0, b_t and E show that the adsorption process is favorable, spontaneous, exothermic, and controlled by physisorption. The point of zero charge (pHZPC) of hydroxyapatite and the isoelectric point (pI) of insulin indicate that the interaction of insulin molecules with prepared apatite can be well described as an ions exchange reaction.\",\"PeriodicalId\":10942,\"journal\":{\"name\":\"Current Chemistry Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ccl.2022.11.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ccl.2022.11.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Studies of kinetic models and adsorption isotherms: application on the interaction of insulin with synthetic hydroxyapatite
The non-stoichiometric, calcium-deficient hydroxyapatite was prepared through a low-temperature from aqueous solutions method and characterized using Physico-chemical methods. The potential of this hydroxyapatite to adsorb and release insulin from aqueous solutions was evaluated under physiological conditions. The effect of contact time and initial concentration were studied in batch experiments. The adsorption rate reached up to 81±5% in the first half-hour of contact, while the release rate of insulin incubation was about 41 ± 5% after 1 hour. The pseudo-first-order, pseudo-second-order, Elovich equation, Weber and Morris intraparticle diffusion model and Bangham’s pore diffusion model were applied to study the kinetics of the adsorption process. The pseudo-second-order kinetic model provided the best correlation R2(0.998) of the used experimental data compared to the other models. The adsorption of insulin onto hydroxyapatite was correlated well R2(0.998) with the Langmuir model as compared to Freundlich, Temkin and Dubinin–Kaganer–Radushkevich (D-K-R) models, with a maximum adsorption capacity of 24.46 mg/g. The isotherms parameters values of ΔG0, b_t and E show that the adsorption process is favorable, spontaneous, exothermic, and controlled by physisorption. The point of zero charge (pHZPC) of hydroxyapatite and the isoelectric point (pI) of insulin indicate that the interaction of insulin molecules with prepared apatite can be well described as an ions exchange reaction.
期刊介绍:
The "Current Chemistry Letters" is a peer-reviewed international journal which aims to publish all the current and outstanding research articles, reviews and letters in chemistry including analytical chemistry, green chemistry, inorganic chemistry, organic chemistry, physical chemistry, etc. This journal is dedicated to serve all academic and industrial researchers and scientists who are expert in all major advances in chemistry research. The journal aims to provide the most complete and reliable source of information on current developments in these fields. The emphasis will be on publishing quality articles rapidly and openly available to researchers worldwide. Please note readers are free to read, download, copy, distribute, print, search, or link to the full texts of articles published on this journal. Current Chemistry Letters is an open access journal, which provides instant access to the full text of research papers without any need for a subscription to the journal where the papers are published. Therefore, anyone has the opportunity to copy, use, redistribute, transmit/display the work publicly and to distribute derivative works, in any sort of digital form for any responsible purpose, subject to appropriate attribution of authorship. Authors who publish their articles may also maintain the copyright of their articles.