Pavitchaya Koolkarnkhai, Chidchanok Intakham, Pradit Sangthong, Wunrada Surat, P. Wonnapinij
{"title":"对虾mtDNA异质遗传及其对mtCR和mtCOI序列数据利用的影响","authors":"Pavitchaya Koolkarnkhai, Chidchanok Intakham, Pradit Sangthong, Wunrada Surat, P. Wonnapinij","doi":"10.1080/24701394.2019.1693549","DOIUrl":null,"url":null,"abstract":"Abstract Mitochondrial DNA (mtDNA) sequences, especially mitochondrial control region (mtCR) and mitochondrial cytochrome c oxidase subunit I (mtCOI), have been widely used in population and evolutionary genetic analyses of metazoan. The presence of mtDNA heteroplasmy – a mixture of mtDNA haplotypes – possibly affects these analyses. This study aimed to reveal mtDNA heteroplasmy in mtCR, mtCOI, and mtND2 (mitochondrial NADH dehydrogenase subunit 2) of Portunus pelagicus, and examine its effect on the use of mtCR and mtCOI sequences. The screening result showed that the probability of observing mtDNA heteroplasmy was approximately 8%. Across the three targeted regions, 92 heteroplasmic variants were observed from seven samples comprising three mothers and four offspring. Most inherited heteroplasmy presented transition and silence mutation. By comparing the proportion of shared variants among maternal relatives to that among non-relatives, the result suggested that most heteroplasmic variants observed in an individual are inherited. Statistical analyses carried out on the inter-generational differences suggested that random drift and purifying selection play roles in determining the offspring’s heteroplasmy level. The size of the random shift varies according to the location of variants and the mothers. The phylogenetic analysis showed that the presence of mtDNA heteroplasmy in mtCR and mtCOI does not affect familial and species identification, respectively. This study firstly reported the mtDNA heteroplasmy in P. pelagicus, its inheritance pattern, and its effect on the use of mtDNA sequence data. This basic knowledge would be useful for the study based on mtDNA sequence data, especially in other invertebrates.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":"23 1","pages":"848 - 860"},"PeriodicalIF":1.1000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Portunus pelagicus mtDNA heteroplasmy inheritance and its effect on the use of mtCR and mtCOI sequence data\",\"authors\":\"Pavitchaya Koolkarnkhai, Chidchanok Intakham, Pradit Sangthong, Wunrada Surat, P. Wonnapinij\",\"doi\":\"10.1080/24701394.2019.1693549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mitochondrial DNA (mtDNA) sequences, especially mitochondrial control region (mtCR) and mitochondrial cytochrome c oxidase subunit I (mtCOI), have been widely used in population and evolutionary genetic analyses of metazoan. The presence of mtDNA heteroplasmy – a mixture of mtDNA haplotypes – possibly affects these analyses. This study aimed to reveal mtDNA heteroplasmy in mtCR, mtCOI, and mtND2 (mitochondrial NADH dehydrogenase subunit 2) of Portunus pelagicus, and examine its effect on the use of mtCR and mtCOI sequences. The screening result showed that the probability of observing mtDNA heteroplasmy was approximately 8%. Across the three targeted regions, 92 heteroplasmic variants were observed from seven samples comprising three mothers and four offspring. Most inherited heteroplasmy presented transition and silence mutation. By comparing the proportion of shared variants among maternal relatives to that among non-relatives, the result suggested that most heteroplasmic variants observed in an individual are inherited. Statistical analyses carried out on the inter-generational differences suggested that random drift and purifying selection play roles in determining the offspring’s heteroplasmy level. The size of the random shift varies according to the location of variants and the mothers. The phylogenetic analysis showed that the presence of mtDNA heteroplasmy in mtCR and mtCOI does not affect familial and species identification, respectively. This study firstly reported the mtDNA heteroplasmy in P. pelagicus, its inheritance pattern, and its effect on the use of mtDNA sequence data. This basic knowledge would be useful for the study based on mtDNA sequence data, especially in other invertebrates.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":\"23 1\",\"pages\":\"848 - 860\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2019.1693549\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2019.1693549","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Portunus pelagicus mtDNA heteroplasmy inheritance and its effect on the use of mtCR and mtCOI sequence data
Abstract Mitochondrial DNA (mtDNA) sequences, especially mitochondrial control region (mtCR) and mitochondrial cytochrome c oxidase subunit I (mtCOI), have been widely used in population and evolutionary genetic analyses of metazoan. The presence of mtDNA heteroplasmy – a mixture of mtDNA haplotypes – possibly affects these analyses. This study aimed to reveal mtDNA heteroplasmy in mtCR, mtCOI, and mtND2 (mitochondrial NADH dehydrogenase subunit 2) of Portunus pelagicus, and examine its effect on the use of mtCR and mtCOI sequences. The screening result showed that the probability of observing mtDNA heteroplasmy was approximately 8%. Across the three targeted regions, 92 heteroplasmic variants were observed from seven samples comprising three mothers and four offspring. Most inherited heteroplasmy presented transition and silence mutation. By comparing the proportion of shared variants among maternal relatives to that among non-relatives, the result suggested that most heteroplasmic variants observed in an individual are inherited. Statistical analyses carried out on the inter-generational differences suggested that random drift and purifying selection play roles in determining the offspring’s heteroplasmy level. The size of the random shift varies according to the location of variants and the mothers. The phylogenetic analysis showed that the presence of mtDNA heteroplasmy in mtCR and mtCOI does not affect familial and species identification, respectively. This study firstly reported the mtDNA heteroplasmy in P. pelagicus, its inheritance pattern, and its effect on the use of mtDNA sequence data. This basic knowledge would be useful for the study based on mtDNA sequence data, especially in other invertebrates.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.