基于统计纹理特征的青光眼分类方法

Kamesh Sonti, R. Dhuli
{"title":"基于统计纹理特征的青光眼分类方法","authors":"Kamesh Sonti, R. Dhuli","doi":"10.1109/AISP53593.2022.9760664","DOIUrl":null,"url":null,"abstract":"Glaucoma is the leading eye disorder that may cause irreversible vision loss if not diagnosed quickly. Due to its invisible symptoms, it is very hard to detect glaucoma in the early stages hence increasing its impact and leads to blindness. Due to the limitations with the available medical tests, glaucoma diagnosis is preferred with computer-aided design (CAD) approach. Hence it is necessary to propose a model to diagnose glaucoma with retinal color fundus images. This paper proposed a new methodology based on local directional texture pattern (LDTP) descriptor and statistical texture features and classified using various machine learning schemes. The proposed method is validated on Drishti-GSI and ACRIMA datasets with 101 and 705 images respectively and evaluated performance with 10-fold cross validation and 70:30 split ratio approach and reported results with sufficient performance metric values. From the obtained simulation results and metrics, we state that our approach achieves good classification performance compared to other existing approaches.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"28 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern Based Glaucoma Classification Approach using Statistical Texture Features\",\"authors\":\"Kamesh Sonti, R. Dhuli\",\"doi\":\"10.1109/AISP53593.2022.9760664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is the leading eye disorder that may cause irreversible vision loss if not diagnosed quickly. Due to its invisible symptoms, it is very hard to detect glaucoma in the early stages hence increasing its impact and leads to blindness. Due to the limitations with the available medical tests, glaucoma diagnosis is preferred with computer-aided design (CAD) approach. Hence it is necessary to propose a model to diagnose glaucoma with retinal color fundus images. This paper proposed a new methodology based on local directional texture pattern (LDTP) descriptor and statistical texture features and classified using various machine learning schemes. The proposed method is validated on Drishti-GSI and ACRIMA datasets with 101 and 705 images respectively and evaluated performance with 10-fold cross validation and 70:30 split ratio approach and reported results with sufficient performance metric values. From the obtained simulation results and metrics, we state that our approach achieves good classification performance compared to other existing approaches.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"28 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是主要的眼部疾病,如果不及时诊断,可能会导致不可逆的视力丧失。由于青光眼的症状不明显,在早期很难发现,从而增加了其影响并导致失明。由于现有医学测试的局限性,青光眼的诊断首选计算机辅助设计(CAD)方法。因此,有必要建立一种利用视网膜彩色眼底图像诊断青光眼的模型。本文提出了一种基于局部定向纹理模式(LDTP)描述符和统计纹理特征,并使用各种机器学习方案进行分类的新方法。在Drishti-GSI和ACRIMA数据集上分别对101张和705张图像进行了验证,并采用10倍交叉验证和70:30分割比方法评估了该方法的性能,并报告了具有足够性能度量值的结果。从得到的仿真结果和指标来看,与其他现有方法相比,我们的方法取得了良好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pattern Based Glaucoma Classification Approach using Statistical Texture Features
Glaucoma is the leading eye disorder that may cause irreversible vision loss if not diagnosed quickly. Due to its invisible symptoms, it is very hard to detect glaucoma in the early stages hence increasing its impact and leads to blindness. Due to the limitations with the available medical tests, glaucoma diagnosis is preferred with computer-aided design (CAD) approach. Hence it is necessary to propose a model to diagnose glaucoma with retinal color fundus images. This paper proposed a new methodology based on local directional texture pattern (LDTP) descriptor and statistical texture features and classified using various machine learning schemes. The proposed method is validated on Drishti-GSI and ACRIMA datasets with 101 and 705 images respectively and evaluated performance with 10-fold cross validation and 70:30 split ratio approach and reported results with sufficient performance metric values. From the obtained simulation results and metrics, we state that our approach achieves good classification performance compared to other existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1