{"title":"基于模拟的预测社交媒体社区影响力的方法:以美国边境安全为例","authors":"Wingyan Chung","doi":"10.1080/15536548.2016.1206758","DOIUrl":null,"url":null,"abstract":"ABSTRACT Predicting influence in social media (SM) communities has a strong implication for cybersecurity and public policy setting. However, the rapidly growing volume and large variety of SM have made the prediction difficult. Unfortunately, research that combines the power of simulation, SM networks, and SM community features to predict influence is not widely available. In this research, we developed and validated a simulation-based approach to predicting influence in SM communities. The approach uses a power-law distribution to simulate user interaction and leverages statistical distributions to model SM posting and to predict influence of opinion leaders. We applied the approach to analyzing 1,323,940 messages posted by 380,498 users on Twitter about the U.S. border security and immigration issues. Three models for predicting behavioral responses were developed based on exponential distribution, Weibull distribution, and gamma distribution. Evaluation results show that the simulation-based approach accurately modeled real-world SM community behavior. The gamma model achieved the best prediction performance; the Weibull model ranked second; and the exponential model had a significantly lower performance. The research should contribute to developing a simulation-based approach to characterizing SM community behavior, implementing new models for SM behavior prediction, providing new empirical findings for understanding U.S. border security SM community behavior, and offering insights to SM-based cybersecurity.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":"1049 1","pages":"107 - 122"},"PeriodicalIF":0.5000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation-based approach to predicting influence in social media communities: A case of U.S. border security\",\"authors\":\"Wingyan Chung\",\"doi\":\"10.1080/15536548.2016.1206758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Predicting influence in social media (SM) communities has a strong implication for cybersecurity and public policy setting. However, the rapidly growing volume and large variety of SM have made the prediction difficult. Unfortunately, research that combines the power of simulation, SM networks, and SM community features to predict influence is not widely available. In this research, we developed and validated a simulation-based approach to predicting influence in SM communities. The approach uses a power-law distribution to simulate user interaction and leverages statistical distributions to model SM posting and to predict influence of opinion leaders. We applied the approach to analyzing 1,323,940 messages posted by 380,498 users on Twitter about the U.S. border security and immigration issues. Three models for predicting behavioral responses were developed based on exponential distribution, Weibull distribution, and gamma distribution. Evaluation results show that the simulation-based approach accurately modeled real-world SM community behavior. The gamma model achieved the best prediction performance; the Weibull model ranked second; and the exponential model had a significantly lower performance. The research should contribute to developing a simulation-based approach to characterizing SM community behavior, implementing new models for SM behavior prediction, providing new empirical findings for understanding U.S. border security SM community behavior, and offering insights to SM-based cybersecurity.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\"1049 1\",\"pages\":\"107 - 122\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15536548.2016.1206758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15536548.2016.1206758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A simulation-based approach to predicting influence in social media communities: A case of U.S. border security
ABSTRACT Predicting influence in social media (SM) communities has a strong implication for cybersecurity and public policy setting. However, the rapidly growing volume and large variety of SM have made the prediction difficult. Unfortunately, research that combines the power of simulation, SM networks, and SM community features to predict influence is not widely available. In this research, we developed and validated a simulation-based approach to predicting influence in SM communities. The approach uses a power-law distribution to simulate user interaction and leverages statistical distributions to model SM posting and to predict influence of opinion leaders. We applied the approach to analyzing 1,323,940 messages posted by 380,498 users on Twitter about the U.S. border security and immigration issues. Three models for predicting behavioral responses were developed based on exponential distribution, Weibull distribution, and gamma distribution. Evaluation results show that the simulation-based approach accurately modeled real-world SM community behavior. The gamma model achieved the best prediction performance; the Weibull model ranked second; and the exponential model had a significantly lower performance. The research should contribute to developing a simulation-based approach to characterizing SM community behavior, implementing new models for SM behavior prediction, providing new empirical findings for understanding U.S. border security SM community behavior, and offering insights to SM-based cybersecurity.
期刊介绍:
As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.