新型镉基金属-有机骨架的制备及表征——用于高选择性、高灵敏度的修饰碳糊电极测定Cu(II)离子

IF 3.8 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Comments on Inorganic Chemistry Pub Date : 2021-01-31 DOI:10.1080/02603594.2020.1870963
Reem G. Deghadi, Ayman S. Eliwa, Aya E. Ali, W. Hosny, G. Mohamed
{"title":"新型镉基金属-有机骨架的制备及表征——用于高选择性、高灵敏度的修饰碳糊电极测定Cu(II)离子","authors":"Reem G. Deghadi, Ayman S. Eliwa, Aya E. Ali, W. Hosny, G. Mohamed","doi":"10.1080/02603594.2020.1870963","DOIUrl":null,"url":null,"abstract":"ABSTRACT A new organic linker Schiff base (H2L) derived from 4-aminobenzoic acid and 2-carboxybenzaldehyde has been successfully synthesized and characterized. The synthesized linker Schiff base was designed to be used in preparation of a new cadmium-based metal-organic framework (Cd-MOF) by sonochemical synthesis, and characterized by using Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and thermal analysis. Under an optimum set of synthesis conditions, uniform cubic crystals with average size 44–69 nm and a Langmuir surface area of 163.461 m2/g were produced within 60–75 min by crystal system orthorhombic. The synthesized Cd-MOF was incorporated as an ionophore in a carbon paste electrode for Cu(II) ion determination in different real water samples. The proposed carbon paste electrode showed a Nernstian slope of 30.15 ± 0.35 mV decade−1 covering a linear range of 1.0 × 10−7 – 1.0 × 10−1 mol L−1 and the detection limit was 7.5 × 10−8 mol L−1 with long-time stability of more than two months over pH range of 2.5–6.5 and fast response time of 10 s. The proposed sensor was highly selective for Cu(II) ions. The synthesized Cd-MOF had mesoporous structure and this supported the mechanism of Cu(II) ion successful determination.","PeriodicalId":10481,"journal":{"name":"Comments on Inorganic Chemistry","volume":"23 1","pages":"189 - 212"},"PeriodicalIF":3.8000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Preparation, Characterization of Novel Cadmium-Based Metal-Organic Framework for Using as a Highly Selective and Sensitive Modified Carbon Paste Electrode in Determination of Cu(II) Ion\",\"authors\":\"Reem G. Deghadi, Ayman S. Eliwa, Aya E. Ali, W. Hosny, G. Mohamed\",\"doi\":\"10.1080/02603594.2020.1870963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A new organic linker Schiff base (H2L) derived from 4-aminobenzoic acid and 2-carboxybenzaldehyde has been successfully synthesized and characterized. The synthesized linker Schiff base was designed to be used in preparation of a new cadmium-based metal-organic framework (Cd-MOF) by sonochemical synthesis, and characterized by using Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and thermal analysis. Under an optimum set of synthesis conditions, uniform cubic crystals with average size 44–69 nm and a Langmuir surface area of 163.461 m2/g were produced within 60–75 min by crystal system orthorhombic. The synthesized Cd-MOF was incorporated as an ionophore in a carbon paste electrode for Cu(II) ion determination in different real water samples. The proposed carbon paste electrode showed a Nernstian slope of 30.15 ± 0.35 mV decade−1 covering a linear range of 1.0 × 10−7 – 1.0 × 10−1 mol L−1 and the detection limit was 7.5 × 10−8 mol L−1 with long-time stability of more than two months over pH range of 2.5–6.5 and fast response time of 10 s. The proposed sensor was highly selective for Cu(II) ions. The synthesized Cd-MOF had mesoporous structure and this supported the mechanism of Cu(II) ion successful determination.\",\"PeriodicalId\":10481,\"journal\":{\"name\":\"Comments on Inorganic Chemistry\",\"volume\":\"23 1\",\"pages\":\"189 - 212\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comments on Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/02603594.2020.1870963\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comments on Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/02603594.2020.1870963","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 13

摘要

成功合成了由4-氨基苯甲酸和2-羧基苯甲醛合成的新型有机连接剂希夫碱(H2L),并对其进行了表征。采用声化学合成方法制备了新型镉基金属有机骨架(Cd-MOF),并利用傅里叶红外光谱(FT-IR)、粉末x射线衍射(PXRD)、brunauer - emmet - teller (BET)、扫描电镜(SEM)、能量色散x射线(EDX)和热分析对其进行了表征。在最佳合成条件下,通过正交晶系在60 ~ 75 min内可制得平均尺寸为44 ~ 69 nm、Langmuir表面积为163.461 m2/g的均匀立方晶体。将合成的Cd-MOF作为离子载体掺入碳糊电极中,用于测定不同实际水样中的Cu(II)离子。在1.0 × 10−7 ~ 1.0 × 10−1 mol L−1的线性范围内,碳糊电极的纳恩斯蒂斜率为30.15±0.35 mV decade−1,检出限为7.5 × 10−8 mol L−1,在2.5 ~ 6.5的pH范围内稳定时间超过2个月,快速响应时间为10 s。该传感器对Cu(II)离子具有高选择性。合成的Cd-MOF具有介孔结构,支持了Cu(II)离子的成功测定机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation, Characterization of Novel Cadmium-Based Metal-Organic Framework for Using as a Highly Selective and Sensitive Modified Carbon Paste Electrode in Determination of Cu(II) Ion
ABSTRACT A new organic linker Schiff base (H2L) derived from 4-aminobenzoic acid and 2-carboxybenzaldehyde has been successfully synthesized and characterized. The synthesized linker Schiff base was designed to be used in preparation of a new cadmium-based metal-organic framework (Cd-MOF) by sonochemical synthesis, and characterized by using Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and thermal analysis. Under an optimum set of synthesis conditions, uniform cubic crystals with average size 44–69 nm and a Langmuir surface area of 163.461 m2/g were produced within 60–75 min by crystal system orthorhombic. The synthesized Cd-MOF was incorporated as an ionophore in a carbon paste electrode for Cu(II) ion determination in different real water samples. The proposed carbon paste electrode showed a Nernstian slope of 30.15 ± 0.35 mV decade−1 covering a linear range of 1.0 × 10−7 – 1.0 × 10−1 mol L−1 and the detection limit was 7.5 × 10−8 mol L−1 with long-time stability of more than two months over pH range of 2.5–6.5 and fast response time of 10 s. The proposed sensor was highly selective for Cu(II) ions. The synthesized Cd-MOF had mesoporous structure and this supported the mechanism of Cu(II) ion successful determination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comments on Inorganic Chemistry
Comments on Inorganic Chemistry 化学-无机化学与核化学
CiteScore
9.00
自引率
1.90%
发文量
18
审稿时长
>12 weeks
期刊介绍: Comments on Inorganic Chemistry is intended as a vehicle for authoritatively written critical discussions of inorganic chemistry research. We publish focused articles of any length that critique or comment upon new concepts, or which introduce new interpretations or developments of long-standing concepts. “Comments” may contain critical discussions of previously published work, or original research that critiques existing concepts or introduces novel concepts. Through the medium of “comments,” the Editors encourage authors in any area of inorganic chemistry - synthesis, structure, spectroscopy, kinetics and mechanisms, theory - to write about their interests in a manner that is both personal and pedagogical. Comments is an excellent platform for younger inorganic chemists whose research is not yet widely known to describe their work, and add to the spectrum of Comments’ author profiles, which includes many well-established inorganic chemists.
期刊最新文献
Chemosensing Applications of Thiophene Derivatives and Anticancer Potential of Their Platinum-Group Metal Complexes: A Review Recent Progress on Core-Shell Zeolitic Imidazole Frameworks: A Review of Synthesis and Applications Recent Advances in O-, N- and S- Donor Ligands As Chemosensors for the Detection of Cr(III) and Cr(VI). Ions: A Comprehensive Review (2018-2024) Direct and mediator-based Z-scheme heterojunctions involving bi2moo6 for abatement of dyes and pharmaceuticals Application of Inorganic Nanomaterials in Transdermal and Topical Medications: Influential Parameters, Opportunities and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1