交联n掺杂C-Sn纳米纤维用于高性能锂离子电池阳极的合理设计

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-03-01 DOI:10.3866/PKU.WHXB202305007
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen
{"title":"交联n掺杂C-Sn纳米纤维用于高性能锂离子电池阳极的合理设计","authors":"Ying Li ,&nbsp;Yushen Zhao ,&nbsp;Kai Chen ,&nbsp;Xu Liu ,&nbsp;Tingfeng Yi ,&nbsp;Li-Feng Chen","doi":"10.3866/PKU.WHXB202305007","DOIUrl":null,"url":null,"abstract":"<div><div>Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh∙g<sup>−1</sup>) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ~260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh∙g<sup>−1</sup> at a current density of 2 A∙g<sup>−1</sup> even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the Sn<sub><em>x</em></sub>Li<sub><em>y</em></sub>alloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (89KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 3","pages":"Article 2305007"},"PeriodicalIF":10.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes\",\"authors\":\"Ying Li ,&nbsp;Yushen Zhao ,&nbsp;Kai Chen ,&nbsp;Xu Liu ,&nbsp;Tingfeng Yi ,&nbsp;Li-Feng Chen\",\"doi\":\"10.3866/PKU.WHXB202305007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh∙g<sup>−1</sup>) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ~260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh∙g<sup>−1</sup> at a current density of 2 A∙g<sup>−1</sup> even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the Sn<sub><em>x</em></sub>Li<sub><em>y</em></sub>alloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (89KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"40 3\",\"pages\":\"Article 2305007\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824000687\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000687","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes
Li-ion batteries (LIBs) have been considered as one of the most promising power sources for electric vehicles, portable electronics and electrical equipment because of their long cycle life and high energy density. The free-standing electrodes without binder, current collector and conductive agent can effectively obtain lager energy density as compared to the traditional electrodes where the addition of inactive components is required. In addition, the free-standing electrode plays an important role in developing flexible electronic devices. Currently, conventional graphite is still the main commercial anode material, but its theoretical specific capacity is limited, and the rate performance is poor. In recent years, the high temperature pyrolytic hard carbon has attracted wide attention due to its higher theoretical specific capacity and more defects than graphite carbon. Moreover, polymer polyacrylonitrile (PAN) can be used as the raw material for preparation of free-standing anodes without any conductive additives or binders by electrospinning technique. Meanwhile, it is beneficial to reduce the production cost and simplify the manufacturing procedures of electrode. However, PAN-based hard carbon anode materials also have certain problems, such as low conductivity, poor rate performance, unsatisfactory cycling stability, and inferior initial Coulombic efficiency (CE). In addition, soft carbon has advantages of high carbon yield, good conductivity, superior cycling stability, high initial CE and relatively low price, but its specific capacity is generally lower than that of hard carbon materials. Based on above analysis, carbon anode materials with good electrochemical performance can be obtained by combining hard carbon and soft carbon, but the specific capacity of carbon materials is still low. Tin (Sn), as an anode material for LIBs, has a high theoretical specific capacity (994 mAh∙g−1) and a low lithium alloying voltage. Nonetheless, the practical use of Sn anode has been limited by its huge volume change (theoretically ~260%) during the repeated alloying-dealloying process, resulting in large pulverization and cracking, which triggers the rapid capacity fading. Hence, in order to increase the specific capacity of carbon anode materials of LIBs, the C-Sn composite film with uniform Sn nanoparticles embedded in N-doped carbon nanofibers was prepared by electrospinning method following by a low-temperature carbonization process. The film was directly used as a free-standing electrode for LIBs and exhibited good electrochemical performance, and the introduction of Sn significantly improved the electrochemical properties of the carbon nanofiber film. The formed fibrous structure after Sn was uniformly coated with carbon can promote the conduction of ions and electrons, and effectively buffers the volume change of Sn nanoparticles during cycling, thus effectively preventing pulverization and agglomeration. The C-Sn-2 electrode with a Sn content of about 25.6% has the highest specific capacity and best rate performance among all samples. The electrochemical test results show that, the charge (discharge) capacity reaches 412.7 (413.5) mAh∙g−1 at a current density of 2 A∙g−1 even after 1000 cycles. Density functional theory (DFT) calculations show that N-doped amorphous carbon has good affinity with lithium, which is conducive to anchoring the SnxLiyalloy formed after alloying reaction on the carbon surface, thereby relieving the volume change of Sn during charge-discharge. This article provides a feasible strategy for the design of high-performance lithium storage materials.
  1. Download: Download high-res image (89KB)
  2. Download: Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone Recent advances of functional nanomaterials for screen-printed photoelectrochemical biosensors Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications Machine learning enables the prediction of amide bond synthesis based on small datasets Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1