苯丙酮尿中苯丙氨酸神经毒性评估的培养模型

In vitro models Pub Date : 2022-01-27 eCollection Date: 2022-02-01 DOI:10.1007/s44164-021-00007-4
Julian Kylies, Bianka Brunne, Gabriele M Rune
{"title":"苯丙酮尿中苯丙氨酸神经毒性评估的培养模型","authors":"Julian Kylies, Bianka Brunne, Gabriele M Rune","doi":"10.1007/s44164-021-00007-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Phenylketonuria (PKU) is caused by a specific mutation of the phenylalanine hydroxylase (PAH) gene. The deficiency of PAH results in high phenylalanine levels (Phe), low tyrosine levels (Tyr), and reduced catecholamine neurotransmitters. The majority of PKU patients, if untreated, develop severe mental retardation. The specific contribution of high Phe and low Tyr levels in mental retardation is largely unknown. In this study, we used organic hippocampal slice cultures in an optimized medium as an adequate culture model to decipher the precise role of high Phe and low Tyr levels on synaptic and glial integrity in PKU. The hippocampus is closely related to learning and memory and reduced catecholamine neurotransmitter levels can be neglected since these neurotransmitters do not derive from the hippocampus. Cultures exposed to physiological concentrations of Phe were compared with cultures exposed to doses of Phe/Tyr, as in the cerebral fluid of PKU patients.</p><p><strong>Methods: </strong>Using capillary western blot analysis and immunohistochemistry, followed by quantitative image analysis, we tested the expression of various pre- and postsynaptic proteins (PSD95, synaptopodin, SNAP25, synaptophysin), glial cell markers (GFAP, Iba1, P2Y12, CD68, C3b), and the morphology of glial cells.</p><p><strong>Results: </strong>We found a downregulation of the postsynaptic protein PSD95 and the presynaptic protein SNAP25 in the presence of high/low Phe/Tyr levels after 3 weeks, which, then however, recovered after 6 weeks in culture. Furthermore, no change in the expression pattern of glial proteins was observed.</p><p><strong>Conclusion: </strong>Our results show that high Phe levels/low Tyr levels alone are unlikely to substantially contribute to mental retardation in PKU. The direct neurotoxic potency of high Phe/low Tyr concentrations is almost negligible since the effects are transient. The transient character in the presence of unchanged levels of high Phe/low Tyr points to a role of reduced catecholamine derivate neurotransmitters, rather than of high Phe/low Tyr levels in PKU.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"1 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756468/pdf/","citationCount":"0","resultStr":"{\"title\":\"A culture model for the assessment of phenylalanine neurotoxicity in phenylketonuria.\",\"authors\":\"Julian Kylies, Bianka Brunne, Gabriele M Rune\",\"doi\":\"10.1007/s44164-021-00007-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Phenylketonuria (PKU) is caused by a specific mutation of the phenylalanine hydroxylase (PAH) gene. The deficiency of PAH results in high phenylalanine levels (Phe), low tyrosine levels (Tyr), and reduced catecholamine neurotransmitters. The majority of PKU patients, if untreated, develop severe mental retardation. The specific contribution of high Phe and low Tyr levels in mental retardation is largely unknown. In this study, we used organic hippocampal slice cultures in an optimized medium as an adequate culture model to decipher the precise role of high Phe and low Tyr levels on synaptic and glial integrity in PKU. The hippocampus is closely related to learning and memory and reduced catecholamine neurotransmitter levels can be neglected since these neurotransmitters do not derive from the hippocampus. Cultures exposed to physiological concentrations of Phe were compared with cultures exposed to doses of Phe/Tyr, as in the cerebral fluid of PKU patients.</p><p><strong>Methods: </strong>Using capillary western blot analysis and immunohistochemistry, followed by quantitative image analysis, we tested the expression of various pre- and postsynaptic proteins (PSD95, synaptopodin, SNAP25, synaptophysin), glial cell markers (GFAP, Iba1, P2Y12, CD68, C3b), and the morphology of glial cells.</p><p><strong>Results: </strong>We found a downregulation of the postsynaptic protein PSD95 and the presynaptic protein SNAP25 in the presence of high/low Phe/Tyr levels after 3 weeks, which, then however, recovered after 6 weeks in culture. Furthermore, no change in the expression pattern of glial proteins was observed.</p><p><strong>Conclusion: </strong>Our results show that high Phe levels/low Tyr levels alone are unlikely to substantially contribute to mental retardation in PKU. The direct neurotoxic potency of high Phe/low Tyr concentrations is almost negligible since the effects are transient. The transient character in the presence of unchanged levels of high Phe/low Tyr points to a role of reduced catecholamine derivate neurotransmitters, rather than of high Phe/low Tyr levels in PKU.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"1 1\",\"pages\":\"103-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-021-00007-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-021-00007-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A culture model for the assessment of phenylalanine neurotoxicity in phenylketonuria.

Objective: Phenylketonuria (PKU) is caused by a specific mutation of the phenylalanine hydroxylase (PAH) gene. The deficiency of PAH results in high phenylalanine levels (Phe), low tyrosine levels (Tyr), and reduced catecholamine neurotransmitters. The majority of PKU patients, if untreated, develop severe mental retardation. The specific contribution of high Phe and low Tyr levels in mental retardation is largely unknown. In this study, we used organic hippocampal slice cultures in an optimized medium as an adequate culture model to decipher the precise role of high Phe and low Tyr levels on synaptic and glial integrity in PKU. The hippocampus is closely related to learning and memory and reduced catecholamine neurotransmitter levels can be neglected since these neurotransmitters do not derive from the hippocampus. Cultures exposed to physiological concentrations of Phe were compared with cultures exposed to doses of Phe/Tyr, as in the cerebral fluid of PKU patients.

Methods: Using capillary western blot analysis and immunohistochemistry, followed by quantitative image analysis, we tested the expression of various pre- and postsynaptic proteins (PSD95, synaptopodin, SNAP25, synaptophysin), glial cell markers (GFAP, Iba1, P2Y12, CD68, C3b), and the morphology of glial cells.

Results: We found a downregulation of the postsynaptic protein PSD95 and the presynaptic protein SNAP25 in the presence of high/low Phe/Tyr levels after 3 weeks, which, then however, recovered after 6 weeks in culture. Furthermore, no change in the expression pattern of glial proteins was observed.

Conclusion: Our results show that high Phe levels/low Tyr levels alone are unlikely to substantially contribute to mental retardation in PKU. The direct neurotoxic potency of high Phe/low Tyr concentrations is almost negligible since the effects are transient. The transient character in the presence of unchanged levels of high Phe/low Tyr points to a role of reduced catecholamine derivate neurotransmitters, rather than of high Phe/low Tyr levels in PKU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1