DNS延迟对IPv6网络中蠕虫传播的影响

A. Kamra, Hanhua Feng, V. Misra, A. Keromytis
{"title":"DNS延迟对IPv6网络中蠕虫传播的影响","authors":"A. Kamra, Hanhua Feng, V. Misra, A. Keromytis","doi":"10.1109/INFCOM.2005.1498526","DOIUrl":null,"url":null,"abstract":"It is a commonly held belief that IPv6 provides greater security against random-scanning worms by virtue of a very sparse address space. We show that an intelligent worm can exploit the directory and naming services necessary for the functioning of any network, and we model the behavior of such a worm in this paper. We explore via analysis and simulation the spread of such worms in an IPv6 Internet. Our results indicate that such a worm can exhibit propagation speeds comparable to an IPv4 random-scanning worm. We develop a detailed analytical model that reveals the relationship between network parameters and the spreading rate of the worm in an IPv6 world. We also develop a simulator based on our analytical model. Simulation results based on parameters chosen from real measurements and the current Internet indicate that an intelligent worm can spread surprising fast in an IPv6 world by using simple strategies. The performance of the worm depends heavily on these strategies, which in turn depend on how secure the directory and naming services of a network are. As a result, additional work is needed in developing detection and defense mechanisms against future worms, and our work identifies directory and naming services as the natural place to do it.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"1 1","pages":"2405-2414 vol. 4"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"The effect of DNS delays on worm propagation in an IPv6 Internet\",\"authors\":\"A. Kamra, Hanhua Feng, V. Misra, A. Keromytis\",\"doi\":\"10.1109/INFCOM.2005.1498526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a commonly held belief that IPv6 provides greater security against random-scanning worms by virtue of a very sparse address space. We show that an intelligent worm can exploit the directory and naming services necessary for the functioning of any network, and we model the behavior of such a worm in this paper. We explore via analysis and simulation the spread of such worms in an IPv6 Internet. Our results indicate that such a worm can exhibit propagation speeds comparable to an IPv4 random-scanning worm. We develop a detailed analytical model that reveals the relationship between network parameters and the spreading rate of the worm in an IPv6 world. We also develop a simulator based on our analytical model. Simulation results based on parameters chosen from real measurements and the current Internet indicate that an intelligent worm can spread surprising fast in an IPv6 world by using simple strategies. The performance of the worm depends heavily on these strategies, which in turn depend on how secure the directory and naming services of a network are. As a result, additional work is needed in developing detection and defense mechanisms against future worms, and our work identifies directory and naming services as the natural place to do it.\",\"PeriodicalId\":20482,\"journal\":{\"name\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"volume\":\"1 1\",\"pages\":\"2405-2414 vol. 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2005.1498526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

人们普遍认为,由于地址空间非常稀疏,IPv6提供了更高的安全性,可以抵御随机扫描蠕虫。我们证明了智能蠕虫可以利用任何网络功能所必需的目录和命名服务,并在本文中对这种蠕虫的行为进行了建模。我们通过分析和模拟来探索这种蠕虫在IPv6互联网中的传播。我们的研究结果表明,这种蠕虫可以表现出与IPv4随机扫描蠕虫相当的传播速度。我们开发了一个详细的分析模型,揭示了网络参数和蠕虫在IPv6世界中的传播速度之间的关系。我们还基于我们的分析模型开发了一个模拟器。仿真结果表明,在IPv6环境下,智能蠕虫通过简单的策略就能以惊人的速度传播。蠕虫的性能在很大程度上取决于这些策略,而这些策略又取决于网络的目录和命名服务的安全性。因此,在开发针对未来蠕虫的检测和防御机制方面需要进行额外的工作,我们的工作将目录和命名服务确定为进行此工作的自然场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of DNS delays on worm propagation in an IPv6 Internet
It is a commonly held belief that IPv6 provides greater security against random-scanning worms by virtue of a very sparse address space. We show that an intelligent worm can exploit the directory and naming services necessary for the functioning of any network, and we model the behavior of such a worm in this paper. We explore via analysis and simulation the spread of such worms in an IPv6 Internet. Our results indicate that such a worm can exhibit propagation speeds comparable to an IPv4 random-scanning worm. We develop a detailed analytical model that reveals the relationship between network parameters and the spreading rate of the worm in an IPv6 world. We also develop a simulator based on our analytical model. Simulation results based on parameters chosen from real measurements and the current Internet indicate that an intelligent worm can spread surprising fast in an IPv6 world by using simple strategies. The performance of the worm depends heavily on these strategies, which in turn depend on how secure the directory and naming services of a network are. As a result, additional work is needed in developing detection and defense mechanisms against future worms, and our work identifies directory and naming services as the natural place to do it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Provably competitive adaptive routing On the effectiveness of DDoS attacks on statistical filtering FIT: fast Internet traceback dPAM: a distributed prefetching protocol for scalable asynchronous multicast in P2P systems Cooperation and decision-making in a wireless multi-provider setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1