基于WGAN-GP模型的无覆盖信息隐藏

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-07-01 DOI:10.4018/IJDCF.20210701.OA5
X. Duan, Baoxia Li, Daidou Guo, Kai Jia, E. Zhang, Chuan Qin
{"title":"基于WGAN-GP模型的无覆盖信息隐藏","authors":"X. Duan, Baoxia Li, Daidou Guo, Kai Jia, E. Zhang, Chuan Qin","doi":"10.4018/IJDCF.20210701.OA5","DOIUrl":null,"url":null,"abstract":"Steganalysis technology judges whether there is secret information in the carrier by monitoring the abnormality of the carrier data, so the traditional information hiding technology has reached the bottleneck. Therefore, this paper proposed the coverless information hiding based on the improved training of Wasserstein GANs (WGAN-GP) model. The sender trains the WGAN-GP with a natural image and a secret image. The generated image and secret image are visually identical, and the parameters of generator are saved to form the codebook. The sender uploads the natural image (disguise image) to the cloud disk. The receiver downloads the camouflage image from the cloud disk and obtains the corresponding generator parameter in the codebook and inputs it to the generator. The generator outputs the same image for the secret image, which realized the same results as sending the secret image. The experimental results indicate that the scheme produces high image quality and good security.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coverless Information Hiding Based on WGAN-GP Model\",\"authors\":\"X. Duan, Baoxia Li, Daidou Guo, Kai Jia, E. Zhang, Chuan Qin\",\"doi\":\"10.4018/IJDCF.20210701.OA5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steganalysis technology judges whether there is secret information in the carrier by monitoring the abnormality of the carrier data, so the traditional information hiding technology has reached the bottleneck. Therefore, this paper proposed the coverless information hiding based on the improved training of Wasserstein GANs (WGAN-GP) model. The sender trains the WGAN-GP with a natural image and a secret image. The generated image and secret image are visually identical, and the parameters of generator are saved to form the codebook. The sender uploads the natural image (disguise image) to the cloud disk. The receiver downloads the camouflage image from the cloud disk and obtains the corresponding generator parameter in the codebook and inputs it to the generator. The generator outputs the same image for the secret image, which realized the same results as sending the secret image. The experimental results indicate that the scheme produces high image quality and good security.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.20210701.OA5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210701.OA5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

隐写分析技术通过监测载体数据的异常情况来判断载体中是否存在秘密信息,使得传统的信息隐藏技术达到了瓶颈。为此,本文提出了基于改进训练的Wasserstein gan (WGAN-GP)模型的无覆盖信息隐藏方法。发送方用自然图像和秘密图像训练WGAN-GP。生成的图像与保密图像在视觉上完全相同,并将生成器的参数保存成码本。发送者将自然图像(伪装图像)上传到云盘。接收机从云盘中下载伪装图像,从码本中获取相应的发生器参数,输入到发生器中。生成器为秘密图像输出相同的图像,实现了与发送秘密图像相同的结果。实验结果表明,该方案具有较高的图像质量和较好的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coverless Information Hiding Based on WGAN-GP Model
Steganalysis technology judges whether there is secret information in the carrier by monitoring the abnormality of the carrier data, so the traditional information hiding technology has reached the bottleneck. Therefore, this paper proposed the coverless information hiding based on the improved training of Wasserstein GANs (WGAN-GP) model. The sender trains the WGAN-GP with a natural image and a secret image. The generated image and secret image are visually identical, and the parameters of generator are saved to form the codebook. The sender uploads the natural image (disguise image) to the cloud disk. The receiver downloads the camouflage image from the cloud disk and obtains the corresponding generator parameter in the codebook and inputs it to the generator. The generator outputs the same image for the secret image, which realized the same results as sending the secret image. The experimental results indicate that the scheme produces high image quality and good security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1