K. Rybacki, S. Winczewski, Valeriy Pleechystyy, J. Rybicki
{"title":"计算纯金属熔点的两相夹心法的改进","authors":"K. Rybacki, S. Winczewski, Valeriy Pleechystyy, J. Rybicki","doi":"10.12921/cmst.2019.0000018","DOIUrl":null,"url":null,"abstract":": The thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations. An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefully elaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal melting temperature is proposed, based on the solid-liquid equilibrium theory. The new method was successfully implemented using the LAMMPS software and the C++11 Standard Libraries and then applied to aluminum and copper systems. The results show that the proposed procedure allows more precise calculations of the melting temperature than the widely used one-phase boundary methods.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvements to the two-phase sandwich method for calculating the melting points of pure metals\",\"authors\":\"K. Rybacki, S. Winczewski, Valeriy Pleechystyy, J. Rybicki\",\"doi\":\"10.12921/cmst.2019.0000018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations. An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefully elaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal melting temperature is proposed, based on the solid-liquid equilibrium theory. The new method was successfully implemented using the LAMMPS software and the C++11 Standard Libraries and then applied to aluminum and copper systems. The results show that the proposed procedure allows more precise calculations of the melting temperature than the widely used one-phase boundary methods.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2019.0000018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2019.0000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvements to the two-phase sandwich method for calculating the melting points of pure metals
: The thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations. An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefully elaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal melting temperature is proposed, based on the solid-liquid equilibrium theory. The new method was successfully implemented using the LAMMPS software and the C++11 Standard Libraries and then applied to aluminum and copper systems. The results show that the proposed procedure allows more precise calculations of the melting temperature than the widely used one-phase boundary methods.