{"title":"基于Lyapunov方程的相称分数阶混沌系统同步新方案","authors":"Hua Wang, Hang-Feng Liang, P. Zan, Zhonghua Miao","doi":"10.1155/2016/5975491","DOIUrl":null,"url":null,"abstract":"This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many coupled items can be taken as zero items. Then, the whole system can be simplified greatly and a simpler controller can be derived. Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Scheme on Synchronization of Commensurate Fractional-Order Chaotic Systems Based on Lyapunov Equation\",\"authors\":\"Hua Wang, Hang-Feng Liang, P. Zan, Zhonghua Miao\",\"doi\":\"10.1155/2016/5975491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many coupled items can be taken as zero items. Then, the whole system can be simplified greatly and a simpler controller can be derived. Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/5975491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5975491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A New Scheme on Synchronization of Commensurate Fractional-Order Chaotic Systems Based on Lyapunov Equation
This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many coupled items can be taken as zero items. Then, the whole system can be simplified greatly and a simpler controller can be derived. Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.
期刊介绍:
Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.