{"title":"上下文感知的Web服务集群和可视化","authors":"B. Kumara, Incheon Paik, Y. Yaguchi","doi":"10.4018/IJWSR.2020100103","DOIUrl":null,"url":null,"abstract":"With the large number of web services now available via the internet, web service discovery has become a challenging and time-consuming task. Organizing web services into similar clusters is a very efficient approach to reducing the search space. A principal issue for clustering is computing the semantic similarity between services. Current approaches do not consider the domain-specific context in measuring similarity and this has affected their clustering performance. This paper proposes a context-aware similarity (CAS) method that learns domain context by machine learning to produce models of context for terms retrieved from the web. To analyze visually the effect of domain context on the clustering results, the clustering approach applies a spherical associated-keyword-space algorithm. The CAS method analyzes the hidden semantics of services within a particular domain, and the awareness of service context helps to find cluster tensors that characterize the cluster elements. Experimental results show that the clustering approach works efficiently.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"180 1","pages":"32-54"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Context-Aware Web Service Clustering and Visualization\",\"authors\":\"B. Kumara, Incheon Paik, Y. Yaguchi\",\"doi\":\"10.4018/IJWSR.2020100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large number of web services now available via the internet, web service discovery has become a challenging and time-consuming task. Organizing web services into similar clusters is a very efficient approach to reducing the search space. A principal issue for clustering is computing the semantic similarity between services. Current approaches do not consider the domain-specific context in measuring similarity and this has affected their clustering performance. This paper proposes a context-aware similarity (CAS) method that learns domain context by machine learning to produce models of context for terms retrieved from the web. To analyze visually the effect of domain context on the clustering results, the clustering approach applies a spherical associated-keyword-space algorithm. The CAS method analyzes the hidden semantics of services within a particular domain, and the awareness of service context helps to find cluster tensors that characterize the cluster elements. Experimental results show that the clustering approach works efficiently.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"180 1\",\"pages\":\"32-54\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2020100103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2020100103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Context-Aware Web Service Clustering and Visualization
With the large number of web services now available via the internet, web service discovery has become a challenging and time-consuming task. Organizing web services into similar clusters is a very efficient approach to reducing the search space. A principal issue for clustering is computing the semantic similarity between services. Current approaches do not consider the domain-specific context in measuring similarity and this has affected their clustering performance. This paper proposes a context-aware similarity (CAS) method that learns domain context by machine learning to produce models of context for terms retrieved from the web. To analyze visually the effect of domain context on the clustering results, the clustering approach applies a spherical associated-keyword-space algorithm. The CAS method analyzes the hidden semantics of services within a particular domain, and the awareness of service context helps to find cluster tensors that characterize the cluster elements. Experimental results show that the clustering approach works efficiently.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.