基于结构知识的图像补绘特征推理网络

Yongqiang Du
{"title":"基于结构知识的图像补绘特征推理网络","authors":"Yongqiang Du","doi":"10.46300/9106.2022.16.87","DOIUrl":null,"url":null,"abstract":"Image inpainting is an essential task in image restoration field. Currently, most meth- ods for image inpainting employ the encoder- decoder framework to restore degraded areas, and this often results in synthesizing wrong se- mantic structure due to the lack of guiding from effective prior information. In this paper, we pro- pose a structural knowledge-guided framework for image inpainting, which predicts both the edge map and corrupted content at the same time. Our model captures structural knowledge in the structure estimation branch to guide the content inference in the latent feature space. By employing self-attention mechanism to aggre- gate known information and inferred structural knowledge, our model is able to synthesize more semantically reasonable content for the corrupted areas. Extensive experiments on three bench- mark datasets demonstrate that our method out- performs most state-of-the-art methods for image inpainting in terms of the evaluation of both vi- sual quality and quantitative metrics.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Knowledge-Guided Feature Inference Network for Image Inpainting\",\"authors\":\"Yongqiang Du\",\"doi\":\"10.46300/9106.2022.16.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting is an essential task in image restoration field. Currently, most meth- ods for image inpainting employ the encoder- decoder framework to restore degraded areas, and this often results in synthesizing wrong se- mantic structure due to the lack of guiding from effective prior information. In this paper, we pro- pose a structural knowledge-guided framework for image inpainting, which predicts both the edge map and corrupted content at the same time. Our model captures structural knowledge in the structure estimation branch to guide the content inference in the latent feature space. By employing self-attention mechanism to aggre- gate known information and inferred structural knowledge, our model is able to synthesize more semantically reasonable content for the corrupted areas. Extensive experiments on three bench- mark datasets demonstrate that our method out- performs most state-of-the-art methods for image inpainting in terms of the evaluation of both vi- sual quality and quantitative metrics.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2022.16.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

图像修复是图像修复领域的一项重要工作。目前,大多数图像修复方法采用编码器-解码器框架来恢复退化区域,由于缺乏有效先验信息的指导,往往导致合成错误的语义结构。在本文中,我们提出了一个结构化的知识引导框架,该框架可以同时预测边缘图和损坏的内容。我们的模型捕获结构估计分支中的结构知识,以指导潜在特征空间中的内容推理。该模型利用自关注机制对已知信息和推断出的结构知识进行聚合,能够为错误区域合成语义上更合理的内容。在三个基准数据集上进行的大量实验表明,我们的方法在视觉质量和定量指标的评估方面优于大多数最先进的图像绘制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Knowledge-Guided Feature Inference Network for Image Inpainting
Image inpainting is an essential task in image restoration field. Currently, most meth- ods for image inpainting employ the encoder- decoder framework to restore degraded areas, and this often results in synthesizing wrong se- mantic structure due to the lack of guiding from effective prior information. In this paper, we pro- pose a structural knowledge-guided framework for image inpainting, which predicts both the edge map and corrupted content at the same time. Our model captures structural knowledge in the structure estimation branch to guide the content inference in the latent feature space. By employing self-attention mechanism to aggre- gate known information and inferred structural knowledge, our model is able to synthesize more semantically reasonable content for the corrupted areas. Extensive experiments on three bench- mark datasets demonstrate that our method out- performs most state-of-the-art methods for image inpainting in terms of the evaluation of both vi- sual quality and quantitative metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
期刊最新文献
Stochastic Machine Learning Models for Mutation Rate Analysis of Malignant Cancer Cells in Patients with Acute Lymphoblastic Leukemia Detecting Small Objects Using a Smartphone and Neon Camera Optimization of New Energy Vehicle Road Noise Problem Based on Finite Element Analysis Method Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties Distributed Generation Hosting Capacity Evaluation for Distribution Networks Considering Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1