利用机器智能生成受天然产物启发的生物活性分子。

Petra Schneider, Karl-Heinz Altmann, Gisbert Schneider
{"title":"利用机器智能生成受天然产物启发的生物活性分子。","authors":"Petra Schneider, Karl-Heinz Altmann, Gisbert Schneider","doi":"10.2533/chimia.2022.396","DOIUrl":null,"url":null,"abstract":"<p><p>The computer-assisted design of new chemical entities has made a leap forward with the development of machine learning models for automated molecule generation. The overarching goal of this conceptual approach is to augment the creativity of medicinal chemists with a machine intelligence. In this Perspective we highlight prospective applications of \"de novo\" drug design and target prediction, aiming to generate natural product-inspired bioactive compounds from scratch. A virtual chemist transforms pharmacologically active natural products into new, easily synthesizable small molecules with desired properties and activity. Computational activity prediction and automated compound generation offer the possibility to systematically transfer the wealth of pharmaceutically active natural products to synthetic small molecule drug discovery. We present selected prospective examples and dare a forecast into the future of natural product-inspired drug discovery.</p>","PeriodicalId":17203,"journal":{"name":"Journal of The American Dietetic Association","volume":"97 1","pages":"396-401"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Bioactive Natural Product-inspired Molecules with Machine Intelligence.\",\"authors\":\"Petra Schneider, Karl-Heinz Altmann, Gisbert Schneider\",\"doi\":\"10.2533/chimia.2022.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The computer-assisted design of new chemical entities has made a leap forward with the development of machine learning models for automated molecule generation. The overarching goal of this conceptual approach is to augment the creativity of medicinal chemists with a machine intelligence. In this Perspective we highlight prospective applications of \\\"de novo\\\" drug design and target prediction, aiming to generate natural product-inspired bioactive compounds from scratch. A virtual chemist transforms pharmacologically active natural products into new, easily synthesizable small molecules with desired properties and activity. Computational activity prediction and automated compound generation offer the possibility to systematically transfer the wealth of pharmaceutically active natural products to synthetic small molecule drug discovery. We present selected prospective examples and dare a forecast into the future of natural product-inspired drug discovery.</p>\",\"PeriodicalId\":17203,\"journal\":{\"name\":\"Journal of The American Dietetic Association\",\"volume\":\"97 1\",\"pages\":\"396-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Dietetic Association\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2022.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Dietetic Association","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2022.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着用于自动分子生成的机器学习模型的发展,新的化学实体的计算机辅助设计取得了飞跃。这种概念性方法的首要目标是用机器智能来增强药物化学家的创造力。在这方面,我们强调了“从头开始”药物设计和靶标预测的前景应用,旨在从零开始产生天然产物启发的生物活性化合物。虚拟化学家将具有药理活性的天然产物转化为具有所需性质和活性的易于合成的新小分子。计算活动预测和自动化合物生成提供了系统地将具有药用活性的天然产物财富转移到合成小分子药物发现的可能性。我们提出了一些有前景的例子,并对未来天然产物启发的药物发现进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Bioactive Natural Product-inspired Molecules with Machine Intelligence.

The computer-assisted design of new chemical entities has made a leap forward with the development of machine learning models for automated molecule generation. The overarching goal of this conceptual approach is to augment the creativity of medicinal chemists with a machine intelligence. In this Perspective we highlight prospective applications of "de novo" drug design and target prediction, aiming to generate natural product-inspired bioactive compounds from scratch. A virtual chemist transforms pharmacologically active natural products into new, easily synthesizable small molecules with desired properties and activity. Computational activity prediction and automated compound generation offer the possibility to systematically transfer the wealth of pharmaceutically active natural products to synthetic small molecule drug discovery. We present selected prospective examples and dare a forecast into the future of natural product-inspired drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform. Early adversity and emotional awareness: A partial confirmation and extension of their relationship. Comparison of Outcomes of Early Versus Late Tracheostomy in the Treatment of Mechanically Ventilated Critically ill Patients. A Case Report of Chondromyxoid Fibroma of the Nasal Cavity. Effects of COVID-19 Infection and Vaccines on Patients with Epilepsy: Real-Life Experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1