K. Feltz, L. MacFadden, Samuel D. Gieg, C. Lough, W. Bezold, N. Skelley
{"title":"3d打印骨科三分之一管板和皮质螺钉的力学性能","authors":"K. Feltz, L. MacFadden, Samuel D. Gieg, C. Lough, W. Bezold, N. Skelley","doi":"10.2217/3dp-2022-0007","DOIUrl":null,"url":null,"abstract":"Aim: 3D printing is a growing technology with promising applications in orthopedic surgery. However, the utilization of 3D-printed surgical implants has not been fully explored. Materials & methods: One-third tubular plates and cortical screws were printed via fused deposition modeling using four materials: acrylonitrile butadiene styrene, carbon fiber-reinforced polylactic acid, polycarbonate and polyether ether ketone. Plates were analyzed with three-point bending and torque testing, and screws underwent torque, shear and pullout testing. Results: Two-factor Analysis of Variance (ANOVA) demonstrated several significant differences between mechanical profiles for different materials and between designs. Conclusion: The results demonstrate that desktop 3D printers can print biocompatible materials to replicate surgical implant designs at a low cost. However, current materials and structures do not approximate the properties of stainless-steel implants.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"366 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws\",\"authors\":\"K. Feltz, L. MacFadden, Samuel D. Gieg, C. Lough, W. Bezold, N. Skelley\",\"doi\":\"10.2217/3dp-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: 3D printing is a growing technology with promising applications in orthopedic surgery. However, the utilization of 3D-printed surgical implants has not been fully explored. Materials & methods: One-third tubular plates and cortical screws were printed via fused deposition modeling using four materials: acrylonitrile butadiene styrene, carbon fiber-reinforced polylactic acid, polycarbonate and polyether ether ketone. Plates were analyzed with three-point bending and torque testing, and screws underwent torque, shear and pullout testing. Results: Two-factor Analysis of Variance (ANOVA) demonstrated several significant differences between mechanical profiles for different materials and between designs. Conclusion: The results demonstrate that desktop 3D printers can print biocompatible materials to replicate surgical implant designs at a low cost. However, current materials and structures do not approximate the properties of stainless-steel implants.\",\"PeriodicalId\":73578,\"journal\":{\"name\":\"Journal of 3D printing in medicine\",\"volume\":\"366 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of 3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/3dp-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws
Aim: 3D printing is a growing technology with promising applications in orthopedic surgery. However, the utilization of 3D-printed surgical implants has not been fully explored. Materials & methods: One-third tubular plates and cortical screws were printed via fused deposition modeling using four materials: acrylonitrile butadiene styrene, carbon fiber-reinforced polylactic acid, polycarbonate and polyether ether ketone. Plates were analyzed with three-point bending and torque testing, and screws underwent torque, shear and pullout testing. Results: Two-factor Analysis of Variance (ANOVA) demonstrated several significant differences between mechanical profiles for different materials and between designs. Conclusion: The results demonstrate that desktop 3D printers can print biocompatible materials to replicate surgical implant designs at a low cost. However, current materials and structures do not approximate the properties of stainless-steel implants.