股票价格模型采用ARIMA - GARCH方法(印尼股份有限公司案例研究)

S. Supriyanto, Aisyah Putri Utami, Najmah Istikanaah
{"title":"股票价格模型采用ARIMA - GARCH方法(印尼股份有限公司案例研究)","authors":"S. Supriyanto, Aisyah Putri Utami, Najmah Istikanaah","doi":"10.20884/1.jmp.2023.15.1.8658","DOIUrl":null,"url":null,"abstract":"PT Unilever Indonesia's stock price swings. This has a heteroscedasticity impact due to the substantial volatility of stock prices. The Box-Jenkins ARIMA method can produce accurate predictions, but it is less precise when used to predict data that has a heteroscedasticity effect. Therefore, this study uses the ARIMA-GARCH method because this model has the advantage of not seeing heteroscedasticity as a problem but instead using it to create a model. The purpose of this study is to estimate parameters using the ARIMA-GARCH technique to develop the best model using PT Unilever Indonesia's share price data and to forecast PT Unilever Indonesia's share price for the period January 20 to January 28, 2021, using the best ARIMA-GARCH model created. Forecasting results for 7 periods using the best ARIMA-GARCH model are Rp. 7,535.00, Rp. 7,511.00, Rp. 7,497.00, Rp. 7,489.00, and Rp. 7,485, respectively.","PeriodicalId":31699,"journal":{"name":"JMPM Jurnal Matematika dan Pendidikan Matematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODEL PERAMALAN HARGA SAHAM MENGGUNAKAN METODE ARIMA – GARCH (STUDI KASUS SAHAM PT. UNILEVER INDONESIA)\",\"authors\":\"S. Supriyanto, Aisyah Putri Utami, Najmah Istikanaah\",\"doi\":\"10.20884/1.jmp.2023.15.1.8658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PT Unilever Indonesia's stock price swings. This has a heteroscedasticity impact due to the substantial volatility of stock prices. The Box-Jenkins ARIMA method can produce accurate predictions, but it is less precise when used to predict data that has a heteroscedasticity effect. Therefore, this study uses the ARIMA-GARCH method because this model has the advantage of not seeing heteroscedasticity as a problem but instead using it to create a model. The purpose of this study is to estimate parameters using the ARIMA-GARCH technique to develop the best model using PT Unilever Indonesia's share price data and to forecast PT Unilever Indonesia's share price for the period January 20 to January 28, 2021, using the best ARIMA-GARCH model created. Forecasting results for 7 periods using the best ARIMA-GARCH model are Rp. 7,535.00, Rp. 7,511.00, Rp. 7,497.00, Rp. 7,489.00, and Rp. 7,485, respectively.\",\"PeriodicalId\":31699,\"journal\":{\"name\":\"JMPM Jurnal Matematika dan Pendidikan Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMPM Jurnal Matematika dan Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20884/1.jmp.2023.15.1.8658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMPM Jurnal Matematika dan Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20884/1.jmp.2023.15.1.8658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PT联合利华印尼公司股价波动。由于股票价格的大幅波动,这具有异方差影响。Box-Jenkins ARIMA方法可以产生准确的预测,但当用于预测具有异方差效应的数据时,它就不那么精确了。因此,本研究使用ARIMA-GARCH方法,因为该模型的优点是不将异方差视为问题,而是使用异方差来创建模型。本研究的目的是使用ARIMA-GARCH技术估计参数,利用PT联合利华印度尼西亚公司的股价数据开发最佳模型,并使用创建的最佳ARIMA-GARCH模型预测PT联合利华印度尼西亚公司在2021年1月20日至1月28日期间的股价。最佳ARIMA-GARCH模型对7个周期的预测结果分别为Rp. 7,535.00、Rp. 7,511.00、Rp. 7,497.00、Rp. 7,489.00和Rp. 7,485。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODEL PERAMALAN HARGA SAHAM MENGGUNAKAN METODE ARIMA – GARCH (STUDI KASUS SAHAM PT. UNILEVER INDONESIA)
PT Unilever Indonesia's stock price swings. This has a heteroscedasticity impact due to the substantial volatility of stock prices. The Box-Jenkins ARIMA method can produce accurate predictions, but it is less precise when used to predict data that has a heteroscedasticity effect. Therefore, this study uses the ARIMA-GARCH method because this model has the advantage of not seeing heteroscedasticity as a problem but instead using it to create a model. The purpose of this study is to estimate parameters using the ARIMA-GARCH technique to develop the best model using PT Unilever Indonesia's share price data and to forecast PT Unilever Indonesia's share price for the period January 20 to January 28, 2021, using the best ARIMA-GARCH model created. Forecasting results for 7 periods using the best ARIMA-GARCH model are Rp. 7,535.00, Rp. 7,511.00, Rp. 7,497.00, Rp. 7,489.00, and Rp. 7,485, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Analisis Pemetaan Isomorfisma Untuk Menentukan Dimensi Ruang Vektor Ł Perbandingan Metode Exponential Smoothing Event Based dengan Metode Winter Exponential Smoothing pada Peramalan Harga Cabai Merah di Kota Medan Investigasi pemanfaatan geogebra untuk pembelajaran matematika di Indonesia: Sebuah analisis bibliometrik Hubungan self regulated learning dan hasil belajar matematika peserta didik kelas V SDN Ceger 02 Self-Efficacy dan sikap mahasiswa terhadap matematika
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1