{"title":"两个同址用户的中继协议","authors":"M. Katz, S. Shamai","doi":"10.1109/ISIT.2005.1523475","DOIUrl":null,"url":null,"abstract":"We consider a wireless network where a remote source sends information to one of two co-located users, and where the second user can serve as a relay. The source's transmission is subjected to quasi-static flat Rayleigh fading, while the transmission of the relay experiences a fixed amplitude gain with a uniform random phase, capturing its close proximity to the destination. All communications share the same time/bandwidth resources, and channel state information is known only to the receivers. We propose relaying protocols which are based on Wyner-Ziv quantization at the relay, and demonstrate their high efficiency (in terms of expected throughput) with respect to previously reported relaying schemes based on amplify-and-forward and decode-and-forward. A salient feature of these protocols is that the relay need not know the actual fading gain experienced by the destination in order to perform the quantization. We also consider a hybrid amplify-quantize-decode and-forward scheme which exhibits superior performance","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Relaying protocols for two co-located users\",\"authors\":\"M. Katz, S. Shamai\",\"doi\":\"10.1109/ISIT.2005.1523475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a wireless network where a remote source sends information to one of two co-located users, and where the second user can serve as a relay. The source's transmission is subjected to quasi-static flat Rayleigh fading, while the transmission of the relay experiences a fixed amplitude gain with a uniform random phase, capturing its close proximity to the destination. All communications share the same time/bandwidth resources, and channel state information is known only to the receivers. We propose relaying protocols which are based on Wyner-Ziv quantization at the relay, and demonstrate their high efficiency (in terms of expected throughput) with respect to previously reported relaying schemes based on amplify-and-forward and decode-and-forward. A salient feature of these protocols is that the relay need not know the actual fading gain experienced by the destination in order to perform the quantization. We also consider a hybrid amplify-quantize-decode and-forward scheme which exhibits superior performance\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a wireless network where a remote source sends information to one of two co-located users, and where the second user can serve as a relay. The source's transmission is subjected to quasi-static flat Rayleigh fading, while the transmission of the relay experiences a fixed amplitude gain with a uniform random phase, capturing its close proximity to the destination. All communications share the same time/bandwidth resources, and channel state information is known only to the receivers. We propose relaying protocols which are based on Wyner-Ziv quantization at the relay, and demonstrate their high efficiency (in terms of expected throughput) with respect to previously reported relaying schemes based on amplify-and-forward and decode-and-forward. A salient feature of these protocols is that the relay need not know the actual fading gain experienced by the destination in order to perform the quantization. We also consider a hybrid amplify-quantize-decode and-forward scheme which exhibits superior performance