利用多模态情感和语义学识别具有政治说服力的网络视频

Behjat Siddiquie, Dave Chisholm, Ajay Divakaran
{"title":"利用多模态情感和语义学识别具有政治说服力的网络视频","authors":"Behjat Siddiquie, Dave Chisholm, Ajay Divakaran","doi":"10.1145/2818346.2820732","DOIUrl":null,"url":null,"abstract":"We introduce the task of automatically classifying politically persuasive web videos and propose a highly effective multi-modal approach for this task. We extract audio, visual, and textual features that attempt to capture affect and semantics in the audio-visual content and sentiment in the viewers' comments. We demonstrate that each of the feature modalities can be used to classify politically persuasive content, and that fusing them leads to the best performance. We also perform experiments to examine human accuracy and inter-coder reliability for this task and show that our best automatic classifier slightly outperforms average human performance. Finally we show that politically persuasive videos generate more strongly negative viewer comments than non-persuasive videos and analyze how affective content can be used to predict viewer reactions.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"505 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Exploiting Multimodal Affect and Semantics to Identify Politically Persuasive Web Videos\",\"authors\":\"Behjat Siddiquie, Dave Chisholm, Ajay Divakaran\",\"doi\":\"10.1145/2818346.2820732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the task of automatically classifying politically persuasive web videos and propose a highly effective multi-modal approach for this task. We extract audio, visual, and textual features that attempt to capture affect and semantics in the audio-visual content and sentiment in the viewers' comments. We demonstrate that each of the feature modalities can be used to classify politically persuasive content, and that fusing them leads to the best performance. We also perform experiments to examine human accuracy and inter-coder reliability for this task and show that our best automatic classifier slightly outperforms average human performance. Finally we show that politically persuasive videos generate more strongly negative viewer comments than non-persuasive videos and analyze how affective content can be used to predict viewer reactions.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"505 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2820732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

我们介绍了自动分类具有政治说服力的网络视频的任务,并提出了一种高效的多模态方法。我们提取音频、视觉和文本特征,试图捕捉视听内容中的情感和语义以及观众评论中的情感。我们证明了每个特征模态都可以用来对具有政治说服力的内容进行分类,并且融合它们会产生最佳性能。我们还进行了实验来检查人类对这项任务的准确性和编码器间的可靠性,并表明我们最好的自动分类器略微优于人类的平均性能。最后,我们证明了政治说服性视频比非说服性视频产生更强烈的负面观众评论,并分析了如何使用情感内容来预测观众的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Multimodal Affect and Semantics to Identify Politically Persuasive Web Videos
We introduce the task of automatically classifying politically persuasive web videos and propose a highly effective multi-modal approach for this task. We extract audio, visual, and textual features that attempt to capture affect and semantics in the audio-visual content and sentiment in the viewers' comments. We demonstrate that each of the feature modalities can be used to classify politically persuasive content, and that fusing them leads to the best performance. We also perform experiments to examine human accuracy and inter-coder reliability for this task and show that our best automatic classifier slightly outperforms average human performance. Finally we show that politically persuasive videos generate more strongly negative viewer comments than non-persuasive videos and analyze how affective content can be used to predict viewer reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Assessment of Teaching Behavior in Immersive Rehearsal Environment-TeachLivE Multimodal Capture of Teacher-Student Interactions for Automated Dialogic Analysis in Live Classrooms Retrieving Target Gestures Toward Speech Driven Animation with Meaningful Behaviors Micro-opinion Sentiment Intensity Analysis and Summarization in Online Videos Session details: Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1