L. Bondi, S. Lameri, David Guera, Paolo Bestagini, E. Delp, S. Tubaro
{"title":"基于摄像机CNN特征聚类的篡改检测与定位","authors":"L. Bondi, S. Lameri, David Guera, Paolo Bestagini, E. Delp, S. Tubaro","doi":"10.1109/CVPRW.2017.232","DOIUrl":null,"url":null,"abstract":"Due to the rapid proliferation of image capturing devices and user-friendly editing software suites, image manipulation is at everyone's hand. For this reason, the forensic community has developed a series of techniques to determine image authenticity. In this paper, we propose an algorithm for image tampering detection and localization, leveraging characteristic footprints left on images by different camera models. The rationale behind our algorithm is that all pixels of pristine images should be detected as being shot with a single device. Conversely, if a picture is obtained through image composition, traces of multiple devices can be detected. The proposed algorithm exploits a convolutional neural network (CNN) to extract characteristic camera model features from image patches. These features are then analyzed by means of iterative clustering techniques in order to detect whether an image has been forged, and localize the alien region.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"3 1","pages":"1855-1864"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"157","resultStr":"{\"title\":\"Tampering Detection and Localization Through Clustering of Camera-Based CNN Features\",\"authors\":\"L. Bondi, S. Lameri, David Guera, Paolo Bestagini, E. Delp, S. Tubaro\",\"doi\":\"10.1109/CVPRW.2017.232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapid proliferation of image capturing devices and user-friendly editing software suites, image manipulation is at everyone's hand. For this reason, the forensic community has developed a series of techniques to determine image authenticity. In this paper, we propose an algorithm for image tampering detection and localization, leveraging characteristic footprints left on images by different camera models. The rationale behind our algorithm is that all pixels of pristine images should be detected as being shot with a single device. Conversely, if a picture is obtained through image composition, traces of multiple devices can be detected. The proposed algorithm exploits a convolutional neural network (CNN) to extract characteristic camera model features from image patches. These features are then analyzed by means of iterative clustering techniques in order to detect whether an image has been forged, and localize the alien region.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"3 1\",\"pages\":\"1855-1864\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tampering Detection and Localization Through Clustering of Camera-Based CNN Features
Due to the rapid proliferation of image capturing devices and user-friendly editing software suites, image manipulation is at everyone's hand. For this reason, the forensic community has developed a series of techniques to determine image authenticity. In this paper, we propose an algorithm for image tampering detection and localization, leveraging characteristic footprints left on images by different camera models. The rationale behind our algorithm is that all pixels of pristine images should be detected as being shot with a single device. Conversely, if a picture is obtained through image composition, traces of multiple devices can be detected. The proposed algorithm exploits a convolutional neural network (CNN) to extract characteristic camera model features from image patches. These features are then analyzed by means of iterative clustering techniques in order to detect whether an image has been forged, and localize the alien region.