Awais Qasim, Adeel Munawar, Jawad Hassan, A. Khalid
{"title":"设计模式使用对移动平台应用能耗影响的评估","authors":"Awais Qasim, Adeel Munawar, Jawad Hassan, A. Khalid","doi":"10.2478/acss-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract Energy efficiency in mobile computing is really an important issue these days. Owing to the popularity and prevalence of Android operating system among the people, a great number of Android smartphone applications have been developed and proliferated by the software developers. While developing these applications, developers have to keep energy consumption factor in mind, as the efficiency of an application is largely affected by it. Thus, designers and programmers endeavour to choose the best designing approaches to develop energy-efficient applications. It is imperative to assist the programmers in choosing appropriate techniques and strategies to manage power consumption. In the present research, we have investigated the effect of Android application design on its energy utilisation. For this purpose, we have practically implemented design patterns on two Android applications and evaluated their energy consumption before and after implementing these patterns. We have modelled the high-level design of these two Android applications by using software design patterns in such a way as to abate their energy requirement. We have also checked how the quality, maintainability, and efficiency of code are affected by these design patterns. The outcomes of the research can facilitate programmers to utilise these details while developing energy efficient solutions.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"183 1","pages":"1 - 11"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating the Impact of Design Pattern Usage on Energy Consumption of Applications for Mobile Platform\",\"authors\":\"Awais Qasim, Adeel Munawar, Jawad Hassan, A. Khalid\",\"doi\":\"10.2478/acss-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Energy efficiency in mobile computing is really an important issue these days. Owing to the popularity and prevalence of Android operating system among the people, a great number of Android smartphone applications have been developed and proliferated by the software developers. While developing these applications, developers have to keep energy consumption factor in mind, as the efficiency of an application is largely affected by it. Thus, designers and programmers endeavour to choose the best designing approaches to develop energy-efficient applications. It is imperative to assist the programmers in choosing appropriate techniques and strategies to manage power consumption. In the present research, we have investigated the effect of Android application design on its energy utilisation. For this purpose, we have practically implemented design patterns on two Android applications and evaluated their energy consumption before and after implementing these patterns. We have modelled the high-level design of these two Android applications by using software design patterns in such a way as to abate their energy requirement. We have also checked how the quality, maintainability, and efficiency of code are affected by these design patterns. The outcomes of the research can facilitate programmers to utilise these details while developing energy efficient solutions.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"183 1\",\"pages\":\"1 - 11\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Evaluating the Impact of Design Pattern Usage on Energy Consumption of Applications for Mobile Platform
Abstract Energy efficiency in mobile computing is really an important issue these days. Owing to the popularity and prevalence of Android operating system among the people, a great number of Android smartphone applications have been developed and proliferated by the software developers. While developing these applications, developers have to keep energy consumption factor in mind, as the efficiency of an application is largely affected by it. Thus, designers and programmers endeavour to choose the best designing approaches to develop energy-efficient applications. It is imperative to assist the programmers in choosing appropriate techniques and strategies to manage power consumption. In the present research, we have investigated the effect of Android application design on its energy utilisation. For this purpose, we have practically implemented design patterns on two Android applications and evaluated their energy consumption before and after implementing these patterns. We have modelled the high-level design of these two Android applications by using software design patterns in such a way as to abate their energy requirement. We have also checked how the quality, maintainability, and efficiency of code are affected by these design patterns. The outcomes of the research can facilitate programmers to utilise these details while developing energy efficient solutions.