{"title":"基于广义极大分割的图定价的硬度","authors":"Euiwoong Lee","doi":"10.1145/2746539.2746549","DOIUrl":null,"url":null,"abstract":"The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ε > 0, there exists δ > 0 such that the integrality gap of nδ-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/4 + ε. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(T), which has a domain size T + 1 for every T ≥ 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hardness of Graph Pricing Through Generalized Max-Dicut\",\"authors\":\"Euiwoong Lee\",\"doi\":\"10.1145/2746539.2746549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ε > 0, there exists δ > 0 such that the integrality gap of nδ-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/4 + ε. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(T), which has a domain size T + 1 for every T ≥ 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardness of Graph Pricing Through Generalized Max-Dicut
The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ε > 0, there exists δ > 0 such that the integrality gap of nδ-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/4 + ε. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(T), which has a domain size T + 1 for every T ≥ 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.