一种新的改进的长短期记忆架构,用于从患者记录中自动预测肝病

V. A. A. Daniel, Ravi Ramaraj
{"title":"一种新的改进的长短期记忆架构,用于从患者记录中自动预测肝病","authors":"V. A. A. Daniel, Ravi Ramaraj","doi":"10.1002/cpe.7372","DOIUrl":null,"url":null,"abstract":"The liver is the second largest organ in the human body after the skin and liver disease mainly impacts the liver's functionality by properly separating the nutrients and waste into the digestive system and also causes scarring (cirrhosis) as time passes. The scarring over time affects the healthy liver tissue and also affects its proper functioning and if left untreated for a prolonged period it can also result in severe complications such as liver failure or liver cancer. The patients can be prevented from the severe complications if the disease is detected at an earlier stage and the existing research for liver disease prediction mainly encouraged the usage of intelligent machine learning‐based techniques. However, these techniques have several complexities such as low accuracy, overfitting, higher training time, poor feature extraction capabilities and so on. To overcome these problems, we present modified long short term emory (MLSTM) architecture for chronic liver disease prediction. The proposed methodology has three stages: information enhancement, feature extraction, and classification. The modified generative adversarial network uses an autoencoder system for sample augmentation which helps to enrich the diversity present in both the normal and abnormal classes. The outlier information is eliminated via the criminal search algorithm which captures the differences and correlation associated with multiple samples. The fast independent component analysis algorithm and enhanced whale optimization algorithm are used for feature extraction. This step mainly identifies the crucial features for liver disease prediction and leaves out the irrelevant and duplicate features thus enhancing the convergence, computational time, and prediction accuracy. The MLSTM architecture is used to classify the samples present in the liver disease datasets into normal and abnormal (liver disease) classes. The proposed methodology offers improved performance in terms of accuracy, recall, means square error, and F‐measure. The results show that the proposed methodology will be efficient for doctors to diagnose liver disease in the earlier stage.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel modified long short term memory architecture for automatic liver disease prediction from patient records\",\"authors\":\"V. A. A. Daniel, Ravi Ramaraj\",\"doi\":\"10.1002/cpe.7372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The liver is the second largest organ in the human body after the skin and liver disease mainly impacts the liver's functionality by properly separating the nutrients and waste into the digestive system and also causes scarring (cirrhosis) as time passes. The scarring over time affects the healthy liver tissue and also affects its proper functioning and if left untreated for a prolonged period it can also result in severe complications such as liver failure or liver cancer. The patients can be prevented from the severe complications if the disease is detected at an earlier stage and the existing research for liver disease prediction mainly encouraged the usage of intelligent machine learning‐based techniques. However, these techniques have several complexities such as low accuracy, overfitting, higher training time, poor feature extraction capabilities and so on. To overcome these problems, we present modified long short term emory (MLSTM) architecture for chronic liver disease prediction. The proposed methodology has three stages: information enhancement, feature extraction, and classification. The modified generative adversarial network uses an autoencoder system for sample augmentation which helps to enrich the diversity present in both the normal and abnormal classes. The outlier information is eliminated via the criminal search algorithm which captures the differences and correlation associated with multiple samples. The fast independent component analysis algorithm and enhanced whale optimization algorithm are used for feature extraction. This step mainly identifies the crucial features for liver disease prediction and leaves out the irrelevant and duplicate features thus enhancing the convergence, computational time, and prediction accuracy. The MLSTM architecture is used to classify the samples present in the liver disease datasets into normal and abnormal (liver disease) classes. The proposed methodology offers improved performance in terms of accuracy, recall, means square error, and F‐measure. The results show that the proposed methodology will be efficient for doctors to diagnose liver disease in the earlier stage.\",\"PeriodicalId\":10584,\"journal\":{\"name\":\"Concurrency and Computation: Practice and Experience\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation: Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.7372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝脏是人体仅次于皮肤和肝脏的第二大器官,疾病主要通过将营养物质和废物正确地分离到消化系统来影响肝脏的功能,随着时间的推移也会导致疤痕(肝硬化)。随着时间的推移,疤痕会影响健康的肝组织,也会影响其正常功能,如果长期不治疗,还会导致严重的并发症,如肝功能衰竭或肝癌。如果在早期发现疾病,可以防止患者出现严重的并发症,现有的肝病预测研究主要鼓励使用基于智能机器学习的技术。然而,这些技术存在精度低、过拟合、训练时间长、特征提取能力差等问题。为了克服这些问题,我们提出了用于慢性肝病预测的改良长短期记忆(MLSTM)架构。该方法分为三个阶段:信息增强、特征提取和分类。改进的生成对抗网络使用自编码器系统进行样本扩增,这有助于丰富正常和异常类中存在的多样性。通过犯罪搜索算法消除异常信息,该算法捕获多个样本之间的差异和相关性。采用快速独立分量分析算法和增强鲸鱼优化算法进行特征提取。该步骤主要识别肝病预测的关键特征,剔除不相关和重复的特征,从而提高收敛性、计算时间和预测精度。MLSTM架构用于将肝脏疾病数据集中的样本分为正常和异常(肝脏疾病)类别。所提出的方法在准确性、召回率、均方误差和F - measure方面提供了改进的性能。结果表明,所提出的方法将有效地帮助医生在早期诊断肝病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel modified long short term memory architecture for automatic liver disease prediction from patient records
The liver is the second largest organ in the human body after the skin and liver disease mainly impacts the liver's functionality by properly separating the nutrients and waste into the digestive system and also causes scarring (cirrhosis) as time passes. The scarring over time affects the healthy liver tissue and also affects its proper functioning and if left untreated for a prolonged period it can also result in severe complications such as liver failure or liver cancer. The patients can be prevented from the severe complications if the disease is detected at an earlier stage and the existing research for liver disease prediction mainly encouraged the usage of intelligent machine learning‐based techniques. However, these techniques have several complexities such as low accuracy, overfitting, higher training time, poor feature extraction capabilities and so on. To overcome these problems, we present modified long short term emory (MLSTM) architecture for chronic liver disease prediction. The proposed methodology has three stages: information enhancement, feature extraction, and classification. The modified generative adversarial network uses an autoencoder system for sample augmentation which helps to enrich the diversity present in both the normal and abnormal classes. The outlier information is eliminated via the criminal search algorithm which captures the differences and correlation associated with multiple samples. The fast independent component analysis algorithm and enhanced whale optimization algorithm are used for feature extraction. This step mainly identifies the crucial features for liver disease prediction and leaves out the irrelevant and duplicate features thus enhancing the convergence, computational time, and prediction accuracy. The MLSTM architecture is used to classify the samples present in the liver disease datasets into normal and abnormal (liver disease) classes. The proposed methodology offers improved performance in terms of accuracy, recall, means square error, and F‐measure. The results show that the proposed methodology will be efficient for doctors to diagnose liver disease in the earlier stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches Distributed low‐latency broadcast scheduling for multi‐channel duty‐cycled wireless IoT networks Open‐domain event schema induction via weighted attentive hypergraph neural network Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSol Simulation method for infrared radiation transmission characteristics of typical ship targets based on optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1